[go: up one dir, main page]

login
Search: a134863 -id:a134863
     Sort: relevance | references | number | modified | created      Format: long | short | data
The Wythoff compound sequence AA: a(n) = floor(n*phi^2) - 1, where phi = (1+sqrt(5))/2.
(Formerly M3278)
+10
84
1, 4, 6, 9, 12, 14, 17, 19, 22, 25, 27, 30, 33, 35, 38, 40, 43, 46, 48, 51, 53, 56, 59, 61, 64, 67, 69, 72, 74, 77, 80, 82, 85, 88, 90, 93, 95, 98, 101, 103, 106, 108, 111, 114, 116, 119, 122, 124, 127, 129, 132, 135, 137, 140, 142, 145, 148, 150, 153, 156, 158, 161, 163, 166
OFFSET
1,2
COMMENTS
Also, integers with "odd" Zeckendorf expansions (end with ...+F_2 = ...+1) (Fibonacci-odd numbers); first column of Wythoff array A035513; from a 3-way splitting of positive integers. [Edited by Peter Munn, Sep 16 2022]
Also, numbers k such that A005206(k) = A005206(k+1). Also k such that A022342(A005206(k)) = k+1 (for all other k's this is k). - Michele Dondi (bik.mido(AT)tiscalenet.it), Dec 30 2001
Also, positions of 1's in A139764, the smallest term in Zeckendorf representation of n. - John W. Layman, Aug 25 2011
From Amiram Eldar, Sep 03 2022: (Start)
Numbers with an odd number of trailing 1's in their dual Zeckendorf representation (A104326), i.e., numbers k such that A356749(k) is odd.
The asymptotic density of this sequence is 1 - 1/phi (A132338). (End)
REFERENCES
A. Brousseau, Fibonacci and Related Number Theoretic Tables. Fibonacci Association, San Jose, CA, 1972, p. 62.
R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 307-308 of 2nd edition.
C. Kimberling, "Stolarsky interspersions", Ars Combinatoria 39 (1995) 129-138.
D. R. Morrison, "A Stolarsky array of Wythoff pairs", in A Collection of Manuscripts Related to the Fibonacci Sequence. Fibonacci Assoc., Santa Clara, CA, 1980, pp. 134-136.
J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 10.
N. J. A. Sloane and Simon Plouffe, Encyclopedia of Integer Sequences, Academic Press, 1995: this sequence appears twice, as both M3277 and M3278.
LINKS
A.H.M. Smeets, Table of n, a(n) for n = 1..20000 (terms 1.1000 from T. D. Noe)
J.-P. Allouche and F. M. Dekking, Generalized Beatty sequences and complementary triples, arXiv:1809.03424 [math.NT], 2018.
A. Brousseau, Fibonacci and Related Number Theoretic Tables, Fibonacci Association, San Jose, CA, 1972, p. 62.
Larry Ericksen and Peter G. Anderson, Patterns in differences between rows in k-Zeckendorf arrays, The Fibonacci Quarterly, Vol. 50, February 2012. - N. J. A. Sloane, Jun 10 2012
Aviezri S. Fraenkel, The Raleigh game, INTEGERS: Electronic Journal of Combinatorial Number Theory 7.2 (2007): A13, 10 pages. See Table 1.
Martin Griffiths, On a Matrix Arising from a Family of Iterated Self-Compositions, Journal of Integer Sequences, 18 (2015), Article 15.11.8.
Clark Kimberling, Interspersions.
Clark Kimberling, Complementary equations and Wythoff Sequences, JIS 11 (2008), Article 08.3.3.
Clark Kimberling, Lucas Representations of Positive Integers, J. Int. Seq., Vol. 23 (2020), Article 20.9.5.
Clark Kimberling, Intriguing infinite words composed of zeros and ones, Elemente der Mathematik (2021).
Clark Kimberling and K. B. Stolarsky, Slow Beatty sequences, devious convergence, and partitional divergence, Amer. Math. Monthly, 123 (No. 2, 2016), 267-273.
L. Lindroos, A. Sills, and H. Wang, Odd fibbinary numbers and the golden ratio, Fib. Q., 52 (2014), 61-65.
A. J. Macfarlane, On the fibbinary numbers and the Wythoff array, arXiv:2405.18128 [math.CO], 2024. See page 3.
M. Rigo, P. Salimov, and E. Vandomme, Some Properties of Abelian Return Words, Journal of Integer Sequences, Vol. 16 (2013), Article 13.2.5.
N. J. A. Sloane, Classic Sequences
N. J. A. Sloane, Families of Essentially Identical Sequences, Mar 24 2021 (Includes this sequence)
Jiemeng Zhang, Zhixiong Wen, and Wen Wu, Some Properties of the Fibonacci Sequence on an Infinite Alphabet, Electronic Journal of Combinatorics, 24(2) (2017), Article P2.52.
FORMULA
a(n) = floor(n*phi) + n - 1. [Corrected by Jianing Song, Aug 18 2022]
a(n) = floor(floor(n*phi)*phi) = A000201(A000201(n)). [See the Mathematics Stack Exchange link for a proof of the equivalence of the definition. - Jianing Song, Aug 18 2022]
a(n) = 1 + A022342(1 + A022342(n)).
G.f.: 1 - (1-x)*Sum_{n>=1} x^a(n) = 1/1 + x/1 + x^2/1 + x^3/1 + x^5/1 + x^8/1 + ... + x^F(n)/1 + ... (continued fraction where F(n)=n-th Fibonacci number). - Paul D. Hanna, Aug 16 2002
a(n) = A001950(n) - 1. - Philippe Deléham, Apr 30 2004
a(n) = A022342(n) + n. - Philippe Deléham, May 03 2004
a(n) = a(n-1) + 2 + A005614(n-2); also a(n) = a(n-1) + 1 + A001468(n-1). - A.H.M. Smeets, Apr 26 2024
MAPLE
A003622 := proc(n)
n+floor(n*(1+sqrt(5))/2)-1 ;
end proc: # R. J. Mathar, Jan 25 2015
# Maple code for the Wythoff compound sequences, from N. J. A. Sloane, Mar 30 2016
# The Wythoff compound sequences: Let A = A000201, B = A001950. Then AA = A003622, AB = A003623, BA = A035336, BB = A101864. The eight triples AAA, AAB, ..., BBB are A134859, A134860, A035337, A134862, A134861, A134863, A035338, A134864, resp.
# Assume files out1, out2 contain lists of the terms in the base sequences A and B from their b-files
read out1; read out2; b[0]:=b1: b[1]:=b2:
w2:=(i, j, n)->b[i][b[j][n]];
w3:=(i, j, k, n)->b[i][b[j][b[k][n]]];
for i from 0 to 1 do
lprint("name=", i);
lprint([seq(b[i][n], n=1..100)]):
od:
for i from 0 to 1 do for j from 0 to 1 do
lprint("name=", i, j);
lprint([seq(w2(i, j, n), n=1..100)]);
od: od:
for i from 0 to 1 do for j from 0 to 1 do for k from 0 to 1 do
lprint("name=", i, j, k);
lprint([seq(w3(i, j, k, n), n=1..100)]);
od: od: od:
MATHEMATICA
With[{c=GoldenRatio^2}, Table[Floor[n c]-1, {n, 70}]] (* Harvey P. Dale, Jun 11 2011 *)
Range[70]//Floor[#*GoldenRatio^2]-1& (* Waldemar Puszkarz, Oct 10 2017 *)
PROG
(PARI) a(n)=floor(n*(sqrt(5)+3)/2)-1
(PARI) a(n) = (sqrtint(n^2*5)+n*3)\2 - 1; \\ Michel Marcus, Sep 17 2022
(Haskell)
a003622 n = a003622_list !! (n-1)
a003622_list = filter ((elem 1) . a035516_row) [1..]
-- Reinhard Zumkeller, Mar 10 2013
(Python)
from sympy import floor
from mpmath import phi
def a(n): return floor(n*phi**2) - 1 # Indranil Ghosh, Jun 09 2017
(Python)
from math import isqrt
def A003622(n): return (n+isqrt(5*n**2)>>1)+n-1 # Chai Wah Wu, Aug 11 2022
CROSSREFS
Positions of 1's in A003849.
Complement of A022342.
The Wythoff compound sequences: Let A = A000201, B = A001950. Then AA = A003622, AB = A003623, BA = A035336, BB = A101864. The eight triples AAA, AAB, ..., BBB are A134859, A134860, A035337, A134862, A134861, A134863, A035338, A134864, resp.
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A000201 as the parent: A000201, A001030, A001468, A001950, A003622, A003842, A003849, A004641, A005614, A014675, A022342, A088462, A096270, A114986, A124841. - N. J. A. Sloane, Mar 11 2021
KEYWORD
nonn,easy,nice
STATUS
approved
Third column of Wythoff array.
+10
15
3, 11, 16, 24, 32, 37, 45, 50, 58, 66, 71, 79, 87, 92, 100, 105, 113, 121, 126, 134, 139, 147, 155, 160, 168, 176, 181, 189, 194, 202, 210, 215, 223, 231, 236, 244, 249, 257, 265, 270, 278, 283, 291, 299, 304, 312
OFFSET
0,1
COMMENTS
Also, positions of 3's in A139764, the smallest term in Zeckendorf representation of n. - John W. Layman, Aug 25 2011
The formula a(n) = 3*A003622(n)-n+1 = 3AA(n)-n+1 conjectured by Layman below is correct, since it is well known that AA(n)+1 = B(n) = A(n)+n, where B = A001950, and so 3AA(n)-n+1 = 3B(n)-n-2 = 3A(n)+2n-2. - Michel Dekking, Aug 31 2017
From Amiram Eldar, Mar 21 2022: (Start)
Numbers k for which the Zeckendorf representation A014417(k) ends with 1, 0, 0.
The asymptotic density of this sequence is 1/phi^4 = 2/(7+3*sqrt(5)), where phi is the golden ratio (A001622). (End)
LINKS
J. H. Conway and N. J. A. Sloane, Notes on the Para-Fibonacci and related sequences.
Clark Kimberling, Complementary equations and Wythoff Sequences, JIS, Vol. 11 (2008), Article 08.3.3.
N. J. A. Sloane, Classic Sequences.
FORMULA
a(n) = F(4)A(n)+F(3)(n-1) = 3A(n)+2n-2, where A = A000201 and F = A000045. - Michel Dekking, Aug 31 2017
It appears that a(n) = 3*A003622(n) - n + 1. - John W. Layman, Aug 25 2011
MAPLE
t := (1+sqrt(5))/2 ; [ seq(3*floor((n+1)*t)+2*n, n=0..80) ];
MATHEMATICA
Table[3 Floor[n GoldenRatio] + 2 n - 2, {n, 46}] (* Michael De Vlieger, Aug 31 2017 *)
PROG
(Python)
from sympy import floor
from mpmath import phi
def a(n): return 3*floor((n + 1)*phi) + 2*n # Indranil Ghosh, Jun 10 2017
(Python)
from math import isqrt
def A035337(n): return 3*(n+isqrt(5*n**2)>>1)+(n-1<<1) # Chai Wah Wu, Aug 11 2022
(PARI) a(n) = 2*n + 3*floor((1+sqrt(5))*(n+1)/2); \\ Altug Alkan, Sep 18 2017
CROSSREFS
Let A = A000201, B = A001950. Then AA = A003622, AB = A003623, BA = A035336, BB = A101864. The eight triples AAA, AAB, ..., BBB are A134859, A134860, A035337, A134862, A134861, A134863, A035338, A134864, resp.
KEYWORD
nonn
STATUS
approved
Wythoff AAA numbers.
+10
15
1, 6, 9, 14, 19, 22, 27, 30, 35, 40, 43, 48, 53, 56, 61, 64, 69, 74, 77, 82, 85, 90, 95, 98, 103, 108, 111, 116, 119, 124, 129, 132, 137, 142, 145, 150, 153, 158, 163, 166, 171, 174, 179, 184, 187, 192, 197, 200, 205, 208, 213, 218, 221, 226, 229, 234, 239, 242
OFFSET
1,2
COMMENTS
The lower and upper Wythoff sequences, A and B, satisfy the complementary equations AAA = AB - 2 and AAA = A + B - 2.
Also numbers with suffix string 001, when written in Zeckendorf representation (with leading zero for the first term). - A.H.M. Smeets, Mar 20 2024
LINKS
Aviezri S. Fraenkel, Complementary iterated floor words and the Flora game, SIAM J. Discrete Math. 24 (2010), no. 2, 570-588.
Martin Griffiths, On a Matrix Arising from a Family of Iterated Self-Compositions, Journal of Integer Sequences, 18 (2015), #15.11.8.
Clark Kimberling, Complementary equations and Wythoff Sequences, Journal of Integer Sequences, 11 (2008) 08.3.3.
FORMULA
a(n) = A(A(A(n))), n >= 1, with A=A000201, the lower Wythoff sequence.
a(n) = 2*floor(n*Phi^2) - n - 2 where Phi = (1+sqrt(5))/2. - Benoit Cloitre, Apr 12 2008; R. J. Mathar, Oct 16 2009
a(n) = A095098(n-1), n > 1. - R. J. Mathar, Oct 16 2009
From A.H.M. Smeets, Mar 23 2024: (Start)
a(n) = A(n) + B(n) - 2 (see Clark Kimberling 2008), with A=A000201, B=A001950, the lower and upper Wythoff sequences, respectively.
Equals {A003622}\{A134860} (= Wythoff AA \ Wythoff AAB). (End)
EXAMPLE
Starting with A=(1,3,4,6,8,9,11,12,14,16,17,19,...), we have A(2)=3, so A(A(2))=4, so A(A(A(2)))=6.
MAPLE
# For Maple code for these Wythoff compound sequences see A003622. - N. J. A. Sloane, Mar 30 2016
MATHEMATICA
A[n_] := Floor[n GoldenRatio];
a[n_] := A@ A@ A@ n;
a /@ Range[100] (* Jean-François Alcover, Oct 28 2019 *)
PROG
(Python)
from sympy import floor
from mpmath import phi
def A(n): return floor(n*phi)
def a(n): return A(A(A(n))) # Indranil Ghosh, Jun 10 2017
(Python)
from math import isqrt
def A134859(n): return ((n+isqrt(5*n**2)>>1)-1<<1)+n # Chai Wah Wu, Aug 10 2022
CROSSREFS
Let A = A000201, B = A001950. Then AA = A003622, AB = A003623, BA = A035336, BB = A101864. The eight triples AAA, AAB, ..., BBB are A134859, A134860, A035337, A134862, A134861, A134863, A035338, A134864, resp.
Essentially the same as A095098.
KEYWORD
nonn
AUTHOR
Clark Kimberling, Nov 14 2007
EXTENSIONS
Incorrect PARI program removed by R. J. Mathar, Oct 16 2009
STATUS
approved
Wythoff AAB numbers; also, Fib101 numbers: those n for which the Zeckendorf expansion A014417(n) ends with 1,0,1.
+10
15
4, 12, 17, 25, 33, 38, 46, 51, 59, 67, 72, 80, 88, 93, 101, 106, 114, 122, 127, 135, 140, 148, 156, 161, 169, 177, 182, 190, 195, 203, 211, 216, 224, 232, 237, 245, 250, 258, 266, 271, 279, 284, 292, 300, 305, 313, 321, 326, 334, 339, 347, 355, 360, 368, 373
OFFSET
1,1
COMMENTS
The lower and upper Wythoff sequences, A and B, satisfy the complementary equations AAB=AA+AB and AAB=A+2B-1.
The asymptotic density of this sequence is 1/phi^4 = 2/(7+3*sqrt(5)), where phi is the golden ratio (A001622). - Amiram Eldar, Mar 21 2022
LINKS
Aviezri S. Fraenkel, Complementary iterated floor words and the Flora game, SIAM J. Discrete Math., Vol. 24, No. 2 (2010), pp. 570-588. - N. J. A. Sloane, May 06 2011
Clark Kimberling, Complementary equations and Wythoff Sequences, Journal of Integer Sequences, Vol. 11 (2008), Article 08.3.3.
FORMULA
a(n) = A(A(B(n))), n>=1, with A=A000201, the lower Wythoff sequence and B=A001950, the upper Wythoff sequence.
MATHEMATICA
With[{r = Map[Fibonacci, Range[2, 14]]}, Position[#, {1, 0, 1}][[All, 1]] &@ Table[If[Length@ # < 3, {}, Take[#, -3]] &@ IntegerDigits@ Total@ Map[FromDigits@ PadRight[{1}, Flatten@ #] &@ Reverse@ Position[r, #] &, Abs@ Differences@ NestWhileList[Function[k, k - SelectFirst[Reverse@ r, # < k &]], n + 1, # > 1 &]], {n, 373}]] (* Michael De Vlieger, Jun 09 2017 *)
PROG
(Python)
from sympy import fibonacci
def a(n):
x=0
while n>0:
k=0
while fibonacci(k)<=n: k+=1
x+=10**(k - 3)
n-=fibonacci(k - 1)
return x
def ok(n): return str(a(n))[-3:]=="101"
print([n for n in range(4, 501) if ok(n)]) # Indranil Ghosh, Jun 08 2017
(Python)
from math import isqrt
def A134860(n): return 3*(n+isqrt(5*n**2)>>1)+(n<<1)-1 # Chai Wah Wu, Aug 10 2022
CROSSREFS
Let A = A000201, B = A001950. Then AA = A003622, AB = A003623, BA = A035336, BB = A101864. The eight triples AAA, AAB, ..., BBB are A134859, A134860, A035337, A134862, A134861, A134863, A035338, A134864, resp.
Set-wise difference A003622 \ A095098. Cf. A095089 (fib101 primes).
KEYWORD
nonn,base
AUTHOR
Antti Karttunen, Jun 01 2004 and Clark Kimberling, Nov 14 2007
EXTENSIONS
This is the result of merging two sequences which were really the same. - N. J. A. Sloane, Jun 10 2017
STATUS
approved
4th column of Wythoff array.
+10
13
5, 18, 26, 39, 52, 60, 73, 81, 94, 107, 115, 128, 141, 149, 162, 170, 183, 196, 204, 217, 225, 238, 251, 259, 272, 285, 293, 306, 314, 327, 340, 348, 361, 374, 382, 395, 403, 416, 429, 437, 450, 458, 471, 484, 492, 505, 518, 526, 539, 547, 560, 573, 581, 594
OFFSET
0,1
LINKS
J. H. Conway and N. J. A. Sloane, Notes on the Para-Fibonacci and related sequences
Clark Kimberling, Complementary equations and Wythoff Sequences, JIS 11 (2008) 08.3.3
N. J. A. Sloane, Classic Sequences
MAPLE
t := (1+sqrt(5))/2 ; [ seq(5*floor((n+1)*t)+3*n, n=0..80) ];
MATHEMATICA
f[n_] := 5 Floor[(n + 1) GoldenRatio] + 3n; Array[f, 54, 0] (* Robert G. Wilson v, Dec 11 2017 *)
PROG
(Python)
from math import isqrt
def A035338(n): return 5*(n+1+isqrt(5*(n+1)**2)>>1)+3*n # Chai Wah Wu, Aug 11 2022
CROSSREFS
Let A = A000201, B = A001950. Then AA = A003622, AB = A003623, BA = A035336, BB = A101864. The eight triples AAA, AAB, ..., BBB are A134859, A134860, A035337, A134862, A134861, A134863, A035338, A134864, resp.
KEYWORD
nonn
STATUS
approved
Wythoff BAA numbers.
+10
11
2, 10, 15, 23, 31, 36, 44, 49, 57, 65, 70, 78, 86, 91, 99, 104, 112, 120, 125, 133, 138, 146, 154, 159, 167, 175, 180, 188, 193, 201, 209, 214, 222, 230, 235, 243, 248, 256, 264, 269, 277, 282, 290, 298, 303, 311, 319, 324, 332, 337, 345, 353, 358, 366, 371
OFFSET
1,1
COMMENTS
The lower and upper Wythoff sequences, A and B, satisfy the complementary equation BAA=A+2B-3.
Also numbers with suffix string 0010, when written in Zeckendorf representation (with leading zero's for the first term). - A.H.M. Smeets, Mar 20 2024
LINKS
Clark Kimberling, Complementary equations and Wythoff Sequences, Journal of Integer Sequences 11 (2008) Article 08.3.3.
FORMULA
a(n) = B(A(A(n))), n>=1, with A=A000201, the lower Wythoff sequence and B=A001950, the upper Wythoff sequence.
PROG
(Python)
from sympy import floor
from mpmath import phi
def A(n): return floor(n*phi)
def B(n): return floor(n*phi**2)
def a(n): return B(A(A(n))) # Indranil Ghosh, Jun 10 2017
(Python)
from math import isqrt
def A134861(n): return 3*((n+isqrt(5*n**2)>>1)-1)+(n<<1) # Chai Wah Wu, Aug 10 2022
CROSSREFS
Let A = A000201, B = A001950. Then AA = A003622, AB = A003623, BA = A035336, BB = A101864. The eight triples AAA, AAB, ..., BBB are A134859, A134860, A035337, A134862, A134861, A134863, A035338, A134864, resp.
KEYWORD
nonn
AUTHOR
Clark Kimberling, Nov 14 2007
STATUS
approved
Wythoff ABB numbers.
+10
11
8, 21, 29, 42, 55, 63, 76, 84, 97, 110, 118, 131, 144, 152, 165, 173, 186, 199, 207, 220, 228, 241, 254, 262, 275, 288, 296, 309, 317, 330, 343, 351, 364, 377, 385, 398, 406, 419, 432, 440, 453, 461, 474, 487, 495, 508, 521, 529, 542, 550, 563, 576, 584, 597
OFFSET
1,1
COMMENTS
The lower and upper Wythoff sequences, A and B, satisfy the complementary equation ABB=2A+3B.
LINKS
Clark Kimberling, Complementary equations and Wythoff Sequences, Journal of Integer Sequences, 11 (2008) Article 08.3.3.
FORMULA
a(n) = A(B(B(n))), n>=1, with A=A000201, the lower Wythoff sequence and B=A001950, the upper Wythoff sequence.
PROG
(Python)
from sympy import floor
from mpmath import phi
def A(n): return floor(n*phi)
def B(n): return floor(n*phi**2)
def a(n): return A(B(B(n))) # Indranil Ghosh, Jun 10 2017
(Python)
from math import isqrt
def A134862(n): return 5*(n+isqrt(5*n**2)>>1)+3*n # Chai Wah Wu, Aug 10 2022
CROSSREFS
Let A = A000201, B = A001950. Then AA = A003622, AB = A003623, BA = A035336, BB = A101864. The eight triples AAA, AAB, ..., BBB are A134859, A134860, A035337, A134862, A134861, A134863, A035338, A134864, resp.
KEYWORD
nonn
AUTHOR
Clark Kimberling, Nov 14 2007
STATUS
approved
Wythoff BBB numbers.
+10
11
13, 34, 47, 68, 89, 102, 123, 136, 157, 178, 191, 212, 233, 246, 267, 280, 301, 322, 335, 356, 369, 390, 411, 424, 445, 466, 479, 500, 513, 534, 555, 568, 589, 610, 623, 644, 657, 678, 699, 712, 733, 746, 767, 788, 801, 822, 843, 856, 877, 890, 911, 932, 945
OFFSET
1,1
COMMENTS
The lower and upper Wythoff sequences, A and B, satisfy the complementary equation BBB=3A+5B.
LINKS
Clark Kimberling, Complementary equations and Wythoff Sequences, Journal of Integer Sequences 11 (2008) Article 08.3.3.
FORMULA
a(n) = B(B(B(n))), n>=1, with B=A001950, the upper Wythoff sequence.
MAPLE
a:=n->floor(n*((1+sqrt(5))/2)^2): [a(a(a(n)))$n=1..55]; # Muniru A Asiru, Nov 24 2018
MATHEMATICA
Nest[Quotient[#(3+Sqrt@5), 2]&, #, 3]&/@Range@100 (* Federico Provvedi, Nov 24 2018 *)
b[n_]:=Floor[n GoldenRatio^2]; a[n_]:=b[b[b[n]]]; Array[a, 60] (* Vincenzo Librandi, Nov 24 2018 *)
PROG
(Python)
from sympy import floor
from mpmath import phi
def B(n): return floor(n*phi**2)
def a(n): return B(B(B(n))) # Indranil Ghosh, Jun 10 2017
(Python)
from math import isqrt
def A134864(n): return (m:=5*n)+(((n+isqrt(n*m))&-2)<<2) # Chai Wah Wu, Aug 10 2022
CROSSREFS
Let A = A000201, B = A001950. Then AA = A003622, AB = A003623, BA = A035336, BB = A101864. The eight triples AAA, AAB, ..., BBB are A134859, A134860, A035337, A134862, A134861, A134863, A035338, A134864, resp.
KEYWORD
nonn
AUTHOR
Clark Kimberling, Nov 14 2007
STATUS
approved
Numbers k for which the Zeckendorf representation A014417(k) ends with "1001".
+10
1
6, 19, 27, 40, 53, 61, 74, 82, 95, 108, 116, 129, 142, 150, 163, 171, 184, 197, 205, 218, 226, 239, 252, 260, 273, 286, 294, 307, 315, 328, 341, 349, 362, 375, 383, 396, 404, 417, 430, 438, 451, 459, 472, 485, 493, 506, 519, 527, 540, 548, 561, 574, 582, 595, 603
OFFSET
1,1
LINKS
FORMULA
Equals {A134859}\{A151915}.
a(n) = A134863(n) - 1 = A035338(n) + 1.
a(n) = a(n-1) + 8 + 5*A005614(n-2) = a(n-1) + F(6) + F(5)*A005614(n-2), n > 1, where F(k) is the k-th Fibonacci number (A000045).
CROSSREFS
Tree of Zeckendorf subsequences of positive integers partitioned by their suffix part S (except initial term or offset in some cases). $ is the empty string. length(S) =
0 1 2 3 4 5 6 7
----------------------------------------------------------------------
$: 0: 00: 000: 0000: 00000: 000000:
100000: 0100000:
A035340 <------
10000:
1000: 01000:
A035338 <------
10: 010: 0010:
A035336 <------ A134861
1010: 01010:
A134863 <------
100: 0100:
A035337 <------
1: 01: 001: 0001:
1001: 01001:
A372302 <------
101: 0101:
A134860 <------
Suffixes 10^n, where ^ means n times repeated concatenation, are the (n+1)-th columns in the Wythoff array A083412 and A035513 (n >= 0).
KEYWORD
nonn
AUTHOR
A.H.M. Smeets, Apr 25 2024
STATUS
approved

Search completed in 0.011 seconds