Displaying 1-10 of 18 results found.
0, 4, 7, 10, 13, 16, 19, 22, 26, 29, 32, 35, 38, 41, 44, 48, 51, 54, 57, 60, 63, 66, 70, 73, 76, 79, 82, 85, 88, 92, 95, 98, 101, 104, 107, 110, 114, 117, 120, 123, 126, 129, 132, 136, 139, 142, 145, 148, 151, 154, 158, 161, 164, 167, 170, 173, 176, 180, 183, 186
PROG
(PARI) for(n=0, 50, print1(ceil(n*Pi), ", ")) \\ G. C. Greubel, Oct 28 2017
(Magma) [Ceiling(n*Pi): n in [0..50]]; // G. C. Greubel, Oct 28 2017
a(n) = ceiling(e^(n*Pi)).
+10
4
1, 24, 536, 12392, 286752, 6635624, 153552936, 3553321281, 82226315586, 1902773895293, 44031505860633, 1018919543279305, 23578503968558227, 545622913077172101, 12626092124920479898, 292176517015939695008
PROG
(PARI) for(n=0, 50, print1(ceil(exp(Pi*n)), ", ")) \\ G. C. Greubel, Nov 06 2017
(Magma) C<i> := ComplexField(); [Ceiling(Exp(Pi(C)*n)): n in [0..50]]; // G. C. Greubel, Nov 06 2017
a(n) = floor((Pi+e)^(n*Pi)).
+10
4
1, 258, 66801, 17265408, 4462406595, 1153350806021, 298094324981778, 77045272021641916, 19913072619720776032, 5146720243221262934093, 1330218081751512472685763, 343807329988307215923432746, 88860226586342124489251555256, 22966758356328845813340839281381
MATHEMATICA
With[{c=\[Pi]+E}, Floor[c^(\[Pi] Range[0, 20])]] (* Harvey P. Dale, Mar 20 2011 *)
PROG
(PARI) for(n=0, 50, print1(floor((Pi+exp(1))^(n*Pi)), ", ")) \\ G. C. Greubel, Nov 06 2017
(Magma) C<i> := ComplexField(); [Floor((Pi(C)+Exp(1))^(n*Pi(C))): n in [0..50]]; // G. C. Greubel, Nov 06 2017
The total number of elastic collisions between a block of mass n, a block of mass 1, and a wall.
+10
4
3, 5, 5, 6, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 12, 13, 13, 13, 14, 14, 14, 15, 15, 15, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 19, 19, 19, 19, 20, 20, 20, 20, 20, 21, 21, 21, 21, 22, 22, 22, 22, 23, 23, 23, 23, 23, 24, 24, 24, 24, 24, 25, 25, 25, 25, 25
COMMENTS
Suppose there is a block A of mass n sliding left toward a stationary block B of mass 1, to the left of which is a wall. Assuming the sliding is frictionless and the collisions are elastic, a(n) is the number of collisions between A and B plus the number of collisions between B and the wall. (See Grant Sanderson links for animated examples.)
Since arctan(sqrt(1/n)) is approximately sqrt(1/n) for large values of n, a(n) = A121854(n) for most values of n.
Conjecture: The values of n for which a(n) != A121854(n) is a subset of A331903.
Initial phase:
\ | ______________________
\ \| | |
\ | | |
\ \| | |
\ | | |
\ \| <=== | Block A |
\ | _________ | |
\ \| | | | M = n |
\ | | Block B | | |
\ \| | | | | |
\ | | M = 1 | | |
\ \| |_________| |______________________|
\ L----------------------------------------------------------
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\ \|
\ | ______________________
\ \| | |
\ | | |
\ \| | |
\ | | |
\ \| <=== | |
\ | _________ | |
\ \| | || |
\ | | || |
\ \| | || |
\ | | || |
\ \| |_________||______________________|
\ L----------------------------------------------------------
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\ \|
\ | ______________________
\ \| | |
\ | | |
\ \| | |
\ | | |
\ \| <== | |
\ | _________ | |
\ \| | | | |
\ | | | | |
\ \|<===>| | | |
\ | | | | |
\ \| |_________| |______________________|
\ L----------------------------------------------------------
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
FORMULA
a(n) = ceiling(Pi/arctan(sqrt(1/n))) - 1.
MATHEMATICA
Table[Ceiling[Pi/ArcTan[Sqrt[1/n]] - 1], {n, 1, 100}]
a(n) = ceiling((Pi - e)*sqrt(n)).
+10
3
0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5
PROG
(PARI) for(n=0, 50, print1(ceil((Pi - exp(1))*sqrt(n)), ", ")) \\ G. C. Greubel, Oct 28 2017
(Magma) C<i> := ComplexField(); [Ceiling((Pi(C) - Exp(1))*Sqrt(n)): n in [0..50]]; // G. C. Greubel, Oct 28 2017
1, 22, 504, 11328, 254433, 5714356, 128339632, 2882400037, 64736277048, 1453922256329, 32653869265129, 733378399940296, 16471061151498380, 369926160190271626, 8308229975861003525, 186595847388277259847, 4190785566084546949287, 94121513992523815815369
PROG
(PARI) for(n=0, 50, print1(floor(Pi^(n*exp(1))), ", ")) \\ G. C. Greubel, Nov 06 2017
(Magma) C<i> := ComplexField(); [Floor(Pi(C)^(n*Exp(1))): n in [0..50]]; // G. C. Greubel, Nov 06 2017
a(n) = ceiling((Pi+e)^(n*e)).
+10
3
1, 123, 14952, 1828145, 223535960, 27332807666, 3342112728282, 408656059975458, 49968325108097956, 6109865382293662598, 747082374864324679925, 91349324397617876090444, 11169717488538903806777418, 1365774619533204572560235118
PROG
(PARI) for(n=0, 50, print1(ceil((Pi+exp(1))^(n*exp(1))), ", ")) \\ G. C. Greubel, Nov 06 2017
(Magma) C<i> := ComplexField(); [Ceiling((Pi(C)+Exp(1))^(n*Exp(1))): n in [0..50]]; // G. C. Greubel, Nov 06 2017
a(n) = ceiling(n*(e^Pi + Pi^e)).
+10
3
0, 46, 92, 137, 183, 228, 274, 320, 365, 411, 456, 502, 548, 593, 639, 684, 730, 776, 821, 867, 912, 958, 1004, 1049, 1095, 1140, 1186, 1232, 1277, 1323, 1368, 1414, 1460, 1505, 1551, 1596, 1642, 1688, 1733, 1779, 1824, 1870, 1916, 1961, 2007, 2052, 2098
MATHEMATICA
With[{a = E^Pi + Pi^E}, Ceiling[a Range[0, 80]]] (* Vincenzo Librandi, Feb 21 2013 *)
PROG
(PARI) for(n=0, 50, print1(ceil(n*(Pi^exp(1)+exp(Pi))), ", ")) \\ G. C. Greubel, Nov 06 2017
(Magma) C<i> := ComplexField(); [Ceiling(n*(Pi(C)^Exp(1) + Exp(1)^Pi(C))): n in [0..50]]; // G. C. Greubel, Nov 06 2017
a(n) = floor(n*(e^Pi - Pi^e)).
+10
3
0, 0, 1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 8, 8, 9, 10, 10, 11, 12, 12, 13, 14, 14, 15, 16, 17, 17, 18, 19, 19, 20, 21, 21, 22, 23, 23, 24, 25, 25, 26, 27, 27, 28, 29, 29, 30, 31, 32, 32, 33, 34, 34, 35, 36, 36, 37, 38, 38, 39, 40, 40, 41, 42, 42, 43, 44, 44, 45, 46, 47, 47, 48, 49, 49
MATHEMATICA
With[{c=E^Pi-Pi^E}, Floor[c*Range[0, 80]]] (* Harvey P. Dale, Jan 06 2012 *)
PROG
(PARI) for(n=0, 50, print1(floor(n*(exp(Pi) - Pi^exp(1))), ", ")) \\ G. C. Greubel, Nov 06 2017
(Magma) C<i> := ComplexField(); [Floor(n*(Exp(1)^Pi(C) - Pi(C)^Exp(1) )): n in [0..50]]; // G. C. Greubel, Nov 06 2017
a(n) = ceiling((Pi + e)*sqrt(n)).
+10
2
0, 6, 9, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 22, 23, 24, 25, 25, 26, 27, 27, 28, 29, 29, 30, 30, 31, 32, 32, 33, 33, 34, 34, 35, 35, 36, 36, 37, 37, 38, 38, 38, 39, 39, 40, 40, 41, 41, 42, 42, 42, 43, 43, 44, 44, 44, 45, 45, 46, 46, 46, 47, 47, 47, 48, 48, 48, 49, 49
PROG
(PARI) for(n=0, 50, print1(ceil((exp(1)+Pi)*sqrt(n)), ", ")) \\ G. C. Greubel, Oct 28 2017
(Magma) C<i> := ComplexField(); [Ceiling((Exp(1) + Pi(C))*Sqrt(n)): n in [0..50]]; // G. C. Greubel, Oct 28 2017
Search completed in 0.009 seconds
|