[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a120989 -id:a120989
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = 6*(n+1)*(2*n+6)!/((n+3)!*(n+5)!).
+10
1
0, 6, 28, 108, 396, 1430, 5148, 18564, 67184, 244188, 891480, 3268760, 12034980, 44482230, 165002460, 614106900, 2292665760, 8583849780, 32223863880, 121267584360, 457412818200, 1729020452796, 6548744132568, 24849948274088, 94460672942496, 359656297841400
OFFSET
-1,2
COMMENTS
a(n) is the number of permutations pi of [n+4] such that s(pi) is one of 132456...(n+4), 231456...(n+4), 312456...(n+4), or 321456...(n+4) and s denotes West's stack-sorting map. - Colin Defant, Jan 14 2019
LINKS
FORMULA
G.f.: (2 - 9*x + 6*x^2 + 2*x^3 + (5*x-2)*sqrt(1-4*x))/(x^4) = 6*x + 14*x^2*G(0); G(k) = 1 + 1/(k + 1 - 2*x*(k+1)*(k+2)*(2*k+9)/(2*x*(k+2)*(2*k+9) + (k+7)/G(k+1))); (continued fraction, 3-step ). - Sergei N. Gladkovskii, Jan 08 2012
-(n+4)*(n-1)*a(n) + 2*n*(2*n+3)*a(n-1) = 0, n > 0. - R. J. Mathar, Dec 15 2015
G.f.: x*C(x)^6 + 3*(1+C(x))C(x)^4, where C(x) = (1-sqrt(1-4x))/(2x) is the Catalan function. - Colin Defant, Jan 14 2019
a(n) = 3*A120989(n+1) + A003517(n+1). - Colin Defant, Jan 14 2019
MATHEMATICA
Table[6 (n + 1) (2 n + 6)! / ((n + 3)! (n + 5)!), {n, -1, 25}] (* Vincenzo Librandi, Jan 15 2019 *)
PROG
(Magma) [6*(n+1)*Factorial(2*n+6)/(Factorial(n+3)*Factorial(n+5)): n in [-1..40]]; // Vincenzo Librandi, Jan 15 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Grisha Berkolaiko (grisha(AT)ORY.ph.biu.ac.il)
STATUS
approved
Triangle read by rows: T(n,k) is the number of binary trees with n edges and such that the first leaf in the preorder traversal is at level k (1<=k<=n). A binary tree is a rooted tree in which each vertex has at most two children and each child of a vertex is designated as its left or right child.
+10
1
2, 1, 4, 2, 4, 8, 5, 9, 12, 16, 14, 24, 30, 32, 32, 42, 70, 85, 88, 80, 64, 132, 216, 258, 264, 240, 192, 128, 429, 693, 819, 833, 760, 624, 448, 256, 1430, 2288, 2684, 2720, 2490, 2080, 1568, 1024, 512, 4862, 7722, 9009, 9108, 8361, 7068, 5488, 3840, 2304, 1024
OFFSET
1,1
COMMENTS
Row sums are the Catalan numbers (A000108). T(n,1)=A000108(n-1) for n>=2 (the Catalan numbers). T(n,n)=2^n. Sum(k*T(n,k),k=1..n)=A120989(n).
FORMULA
T(n,k)=Sum(j*binomial(k,j)*binomial(2n-2k+j,n-k)/(2n-2k+j), j=0..k). G.f.=1/[1-tz(1+C)], where C=[1-sqrt(1-4z)]/(2z) is the Catalan function.
EXAMPLE
T(2,1)=1 because we have the tree /\.
Triangle starts:
2;
1;4;
2,4,8;
5,9,12,16;
14,24,30,32,32;
MAPLE
T:=proc(n, k) if k<n then add(j*binomial(k, j)*binomial(2*n-2*k+j, n-k)/(2*n-2*k+j), j=0..k) elif k=n then 2^n else 0 fi end:for n from 1 to 11 do seq(T(n, k), k=1..n) od; # yields sequence in triangular form
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Jul 30 2006
STATUS
approved
Number of North-East lattice paths from (0,0) to (n,n) that have exactly three east steps below the subdiagonal y = x-1.
+10
1
5, 24, 95, 356, 1309, 4784, 17472, 63920, 234498, 863056, 3187041, 11807740, 43885725, 163601760, 611625660, 2292665760, 8615485590, 32451382800, 122499978510, 463369822344, 1756113365874, 6667436894624, 25357090075600, 96589604043296, 368478056090340, 1407687015207200, 5384924914890213
OFFSET
4,1
COMMENTS
This sequence is related to paired pattern P_1 in Pan and Remmel's link.
LINKS
Ran Pan, Jeffrey B. Remmel, Paired patterns in lattice paths, arXiv:1601.07988 [math.CO], 2016.
FORMULA
G.f.: -((-1 + f(x) + 2*x)^2*(-1 + f(x) + 2*(f(x) - 2*x)*x))/(8*x^2), where f(x) = sqrt(1 - 4*x).
CROSSREFS
KEYWORD
nonn
AUTHOR
Ran Pan, Feb 03 2016
STATUS
approved
Triangle read by rows related to Catalan triangle A009766.
+10
1
1, 1, 1, 2, 3, 2, 5, 9, 9, 5, 14, 28, 34, 28, 14, 42, 90, 123, 123, 90, 42, 132, 297, 440, 497, 440, 297, 132, 429, 1001, 1573, 1935, 1935, 1573, 1001, 429, 1430, 3432, 5642, 7397, 8068, 7397, 5642, 3432, 1430, 4862, 11934, 20332, 28014, 32636, 32636, 28014, 20332, 11934
OFFSET
0,4
LINKS
Laurent Méhats, Lutz Straßburger, Non-crossing Tree Realizations of Ordered Degree Sequences, Pages 211-227 in Logical Aspects of Computational Linguistics. Celebrating 20 Years of LACL (1996-2016), 9th International Conference, LACL 2016, Nancy, France, December 5-7, 2016, Proceedings, Lecture Notes in Computer Science book series (LNCS, volume 10054). See Eq. (7).
EXAMPLE
Triangle begins:
1,
1,1,
2,3,2,
5,9,9,5,
14,28,34,28,14,
42,90,123,123,90,42,
132,297,440,497,440,297,132,
...
MAPLE
A000108 := proc(q)
if q <0 then
0;
else
binomial(2*q, q)/(1+q) ;
end if;
end proc:
R := proc(q, s)
option remember;
local a, j, l ;
if q= 0 then
A000108(s) ;
elif s = 0 then
A000108(q) ;
else
a := 0 ;
for j from 0 to q do
for l from 0 to s do
if j+l-1 >= 0 then
a := a+A000108(j+l-1) *procname(q-j, s-l) ;
end if;
end do:
end do:
end if;
end proc:
A293944 := proc(n, k)
R(n-k, k) ;
end proc:
seq(seq(A293944(n, k), k=0..n), n=0..12) ; # R. J. Mathar, Nov 02 2017
MATHEMATICA
R[q_, s_] := R[q, s] = Module[{a, j, l}, If[q == 0, CatalanNumber[s], If[s == 0, CatalanNumber[q], a = 0; For[j = 0, j <= q, j++, For[l = 0, l <= s , l++, If[j + l - 1 >= 0, a = a + CatalanNumber[j + l - 1] R[q - j, s - l]] ]]]] /. Null -> a];
T [n_, k_] := R[n - k, k];
Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 07 2020, after R. J. Mathar *)
CROSSREFS
Cf. A009766, A000108 (1st column), A000245 (2nd column), A120989 (3rd), A090317 (row sums).
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Oct 21 2017
EXTENSIONS
More terms from R. J. Mathar, Nov 02 2017
STATUS
approved

Search completed in 0.007 seconds