[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a129994 -id:a129994
     Sort: relevance | references | number | modified | created      Format: long | short | data
Triangle read by rows: T(n,0)=1, T(n,k)=2*binomial(n,k) if k>0 (0<=k<=n).
+10
9
1, 1, 2, 1, 4, 2, 1, 6, 6, 2, 1, 8, 12, 8, 2, 1, 10, 20, 20, 10, 2, 1, 12, 30, 40, 30, 12, 2, 1, 14, 42, 70, 70, 42, 14, 2, 1, 16, 56, 112, 140, 112, 56, 16, 2, 1, 18, 72, 168, 252, 252, 168, 72, 18, 2, 1, 20, 90, 240, 420, 504, 420, 240, 90, 20, 2, 1, 22, 110, 330, 660, 924, 924, 660, 330, 110, 22, 2
OFFSET
0,3
COMMENTS
Pascal triangle with all entries doubled except for the first entry in each row. A028326 with first column replaced by 1's. Row sums are 2^(n+1)-1.
From Paul Barry, Sep 19 2008: (Start)
Reversal of A129994. Diagonal sums are A001595. T(2n,n) is A100320.
Binomial transform of matrix with 1,2,2,2,... on main diagonal, zero elsewhere. (End)
This sequence is jointly generated with A210042 as an array of coefficients of polynomials v(n,x): initially, u(1,x)=v(1,x)=1; for n>1, u(n,x)=u(n-1,x)+v(n-1,x) +1 and v(n,x)=x*u(n-1,x)+x*v(n-1,x). See the Mathematica section. - Clark Kimberling, Mar 09 2012
Subtriangle of the triangle given by (1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 2, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 25 2012
FORMULA
T(n,0) = 1; for n>0: T(n,n) = 2, T(n,k) = T(n-1,k) + T(n-1,n-k), 1<k<n. - Reinhard Zumkeller, Mar 04 2012
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k) - T(n-2,k-1), T(0,0) = T(1,0) = 1, T(1,1) = 2, T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Mar 25 2012
G.f.: (1-x+x*y)/((-1+x)*(x*y+x-1)). - R. J. Mathar, Aug 11 2015
EXAMPLE
Triangle starts:
1;
1, 2;
1, 4, 2;
1, 6, 6, 2;
1, 8, 12, 8, 2;
1, 10, 20, 20, 10, 2;
(1, 0, 0, 1, 0, 0, ...) DELTA (0, 2, -1, 0, 0, ...) begins:
1;
1, 0;
1, 2, 0;
1, 4, 2, 0;
1, 6, 6, 2, 0;
1, 8, 12, 8, 2, 0;
1, 10, 20, 20, 10, 2, 0. - Philippe Deléham, Mar 25 2012
MAPLE
T:=proc(n, k) if k=0 then 1 else 2*binomial(n, k) fi end: for n from 0 to 12 do seq(T(n, k), k=0..n) od; # yields sequence in triangular form
MATHEMATICA
(* First program *)
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + v[n - 1, x] + 1;
v[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A210042 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A124927 *) (* Clark Kimberling, Mar 17 2012 *)
(* Second program *)
Table[If[k==0, 1, 2*Binomial[n, k]], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Jul 10 2019 *)
PROG
(Haskell)
a124927 n k = a124927_tabl !! n !! k
a124927_row n = a124927_tabl !! n
a124927_tabl = iterate
(\row -> zipWith (+) ([0] ++ reverse row) (row ++ [1])) [1]
-- Reinhard Zumkeller, Mar 04 2012
(PARI) T(n, k) = if(k==0, 1, 2*binomial(n, k)); \\ G. C. Greubel, Jul 10 2019
(Magma) [k eq 0 select 1 else 2*Binomial(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 10 2019
(Sage)
def T(n, k):
if (k==0): return 1
else: return 2*binomial(n, k)
[[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jul 10 2019
CROSSREFS
Cf. A000225.
Cf. A074909.
KEYWORD
nonn,easy,tabl
AUTHOR
Gary W. Adamson, Nov 12 2006
EXTENSIONS
Edited by N. J. A. Sloane, Nov 24 2006
STATUS
approved

Search completed in 0.009 seconds