[go: up one dir, main page]

login
Search: a128632 -id:a128632
     Sort: relevance | references | number | modified | created      Format: long | short | data
Expansion of a modular function for Gamma_0(6).
(Formerly M1542 N0602)
+10
12
1, 2, -5, -24, -23, 76, 249, 168, -599, -1670, -1026, 3272, 8529, 5232, -14062, -35976, -22337, 51516, 131617, 82568, -169376, -432636, -273332, 513584, 1309800, 830372, -1456569, -3709672, -2354215, 3904696, 9931407, 6301120, -9983208, -25339626, -16057040, 24504584, 62033318
OFFSET
-3,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Morris Newman, Construction and application of a class of modular functions (II). Proc. London Math. Soc. (3) 9 1959 373-387.
Morris Newman, Construction and application of a class of modular functions, II, Proc. London Math. Soc. (3) 9 1959 373-387. [Annotated scanned copy, barely legible]
FORMULA
Expansion of q^-3 * psi(q)^6 * phi(-q)^2 in powers of q where phi(), psi() are Ramanujan theta functions. - Michael Somos, Apr 24 2014
Expansion of eta(q^2)^10 * eta(q^3)^14 / (eta(q)^2 * eta(q^6)^22) in powers of q.
Euler transform of period 6 sequence [2, -8, -12, -8, 2, 0, ...]. - Michael Somos, Nov 10 2005
Convolution product of A128632, A128633, and A105559 (all three of them are modular functions and McKay-Thompson series of class 6E for the monster group). - Michael Somos, May 23 2014
EXAMPLE
G.f. = q^-3 + 2*q^-2 - 5*q^-1 - 24 - 23*q + 76*q^2 + 249*q^3 + 168*q^4 + ...
MATHEMATICA
QP = QPochhammer; s = QP[q^2]^10*(QP[q^3]^14/(QP[q]^2*QP[q^6]^22)) + O[q]^40; CoefficientList[s, q] (* Jean-François Alcover, Nov 14 2015, adapted from PARI *)
PROG
(PARI) {a(n) = local(A); if( n<-3, 0, n+=3; A = x * O(x^n); polcoeff( eta(x^2 + A)^10 * eta(x^3 + A)^14 / (eta(x + A)^2 * eta(x^6 + A)^22), n))}; /* Michael Somos, Nov 10 2005 */
CROSSREFS
KEYWORD
sign,easy
EXTENSIONS
More terms from Kok Seng Chua (chuaks(AT)ihpc.nus.edu.sg), Jan 14 2001
STATUS
approved
McKay-Thompson series of class 6E for the Monster group with a(0) = 4.
+10
8
1, 4, 6, 4, -3, -12, -8, 12, 30, 20, -30, -72, -46, 60, 156, 96, -117, -300, -188, 228, 552, 344, -420, -1008, -603, 732, 1770, 1048, -1245, -2976, -1776, 2088, 4908, 2900, -3420, -7992, -4658, 5460, 12756, 7408, -8583, -19944, -11564, 13344, 30756, 17744
OFFSET
-1,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
FORMULA
Expansion of 3 * (b(q^2)^2 / b(q)) / (c(q^2)^2 / c(q)) in powers of q where b(), c() are cubic AGM theta functions.
Expansion of q^-1 * (psi(q) / psi(q^3))^4 in powers of q where psi() is a Ramanujan theta function.
Expansion of (eta(q^2)^2 * eta(q^3) / (eta(q) * eta(q^6)^2))^4 in powers of q.
Euler transform of period 6 sequence [ 4, -4, 0, -4, 4, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = v * (u - 9) * (u - 1) - (u - v)^2.
G.f.: (1/x) * (Product_{k>0} (1 + x^k + x^(2*k)) * (1 - x^k + x^(2*k))^2)^-4.
a(n) = A007258(n) = A105559(n) = A128632(n) unless n = 0.
EXAMPLE
G.f. = 1/q + 4 + 6*q + 4*q^2 - 3*q^3 - 12*q^4 - 8*q^5 + 12*q^6 + 30*q^7 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ (EllipticTheta[ 2, 0, q^(1/2)] / EllipticTheta[ 2, 0, q^(3/2)])^4, {q, 0, n}]; (* Michael Somos, Nov 12 2015 *)
QP = QPochhammer; s = (QP[q^2]^2*(QP[q^3]/(QP[q]*QP[q^6]^2)))^4 + O[q]^50; CoefficientList[s, q] (* Jean-François Alcover, Nov 12 2015, adapted from PARI *)
PROG
(PARI) {a(n) = my(A); if( n<-1, 0, n++; A = x * O(x^n); polcoeff( (eta(x^2 + A)^2 * eta(x^3 + A) / (eta(x + A) * eta(x^6 + A)^2))^4, n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Mar 15 2007
STATUS
approved
Expansion of q * (psi(q^3)^3 / psi(q)) / (phi(-q)^3 / phi(-q^3)) in powers of q where phi(), psi() are Ramanujan theta functions.
+10
8
1, 5, 19, 61, 174, 455, 1112, 2573, 5689, 12102, 24900, 49759, 96902, 184408, 343722, 628717, 1130418, 2000669, 3489788, 6005910, 10207688, 17147892, 28494120, 46865519, 76342903, 123236446, 197233723, 313106264, 493231830, 771301986, 1197743552, 1847606573
OFFSET
1,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
LINKS
Kevin Acres, David Broadhurst, Eta quotients and Rademacher sums, arXiv:1810.07478 [math.NT], 2018. See Table 1 p. 10.
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of (1/3) * (c(q^2)^2 / c(q)) / (b(q)^2 / b(q^2)) in powers of q where b(), c() are cubic AGM theta functions.
Expansion of (eta(q^6) / eta(q))^5 * eta(q^2) / eta(q^3) in powers of q.
Euler transform of period 6 sequence [ 5, 4, 6, 4, 5, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = v * (1 + 8*u) * (1 + 9*v) - (u-v)^2.
G.f. is a period 1 Fourier series which satisfies f(-1 / (6 t)) = (1/72) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A128632.
G.f.: x * Product_{k>0} ((1 - x^(6*k)) / (1-x^k))^5 * ((1 - x^(2*k)) / (1 - x^(3*k))).
8 * a(n) = A128639(n) unless n = 0. Convolution inverse of A128632.
a(n) ~ exp(2*Pi*sqrt(2*n/3)) / (72 * 2^(3/4) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 08 2015
EXAMPLE
G.f. = q + 5*q^2 + 19*q^3 + 61*q^4 + 174*q^5 + 455*q^6 + 1112*q^7 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ (QPochhammer[ q^6] / QPochhammer[ q])^5 (QPochhammer[ q^2] / QPochhammer[ q^3]), {q, 0, n}]; (* Michael Somos, Jun 08 2015 *)
nmax = 40; Rest[CoefficientList[Series[x * Product[((1 - x^(6*k)) / (1-x^k))^5 * ((1 - x^(2*k)) / (1 - x^(3*k))), {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Sep 08 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x^6 + A) / eta(x + A))^5 * eta(x^2 + A) / eta(x^3 + A), n))};
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Mar 16 2007
EXTENSIONS
Edited by N. J. A. Sloane, Apr 01 2008
STATUS
approved
McKay-Thompson series of class 6E for the Monster group with a(0) = 1.
+10
4
1, 1, 6, 4, -3, -12, -8, 12, 30, 20, -30, -72, -46, 60, 156, 96, -117, -300, -188, 228, 552, 344, -420, -1008, -603, 732, 1770, 1048, -1245, -2976, -1776, 2088, 4908, 2900, -3420, -7992, -4658, 5460, 12756, 7408, -8583, -19944, -11564, 13344, 30756, 17744, -20448, -46944, -26916
OFFSET
-1,3
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
LINKS
J. H. Conway and S. P. Norton, Monstrous Moonshine, Bull. Lond. Math. Soc. 11 (1979) 308-339.
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Comm. Algebra 22, No. 13, 5175-5193 (1994).
J. McKay and H. Strauss, The q-series of monstrous moonshine and the decomposition of the head characters, Comm. Algebra 18 (1990), no. 1, 253-278.
Morris Newman, Construction and application of a class of modular functions. II. Proc. London Math. Soc. (3) 9 1959 373-387.
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of (1/q) * a(q^2) * psi(q) / psi(q^3)^3 in powers of q where psi() is a Ramanujan theta function and a() is a cubic AGM theta function. - Michael Somos, May 22 2015
Expansion of 6 + eta(q)^5 * eta(q^3) / (eta(q^2) * eta(q^6)^5) in powers of q. - Michael Somos, May 22 2015
a(n) = A007258(n) = A105559(n) = A128632(n) = A128633(n) = A258094(n) unless n=0. - Michael Somos, May 22 2015
EXAMPLE
G.f. = 1/q + 1 + 6*q + 4*q^2 - 3*q^3 - 12*q^4 - 8*q^5 + 12*q^6 + 30*q^7 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ 6 + QPochhammer[ q]^5 QPochhammer[ q^3] / (q QPochhammer[ q^2] QPochhammer[ q^6]^5), {q, 0, n}]; (* Michael Somos, May 22 2015 *)
a[ n_] := SeriesCoefficient[ -2 + (1/q) (QPochhammer[ q^2] QPochhammer[ q^3]^3 / (QPochhammer[ q] QPochhammer[ q^6]^3))^3, {q, 0, n}]; (* Michael Somos, May 22 2015 *)
a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, q]^3 / EllipticTheta[ 3, 0, q^3] + 3 EllipticTheta[ 3, 0, q^3]^3 / EllipticTheta[ 3, 0, q]) EllipticTheta[ 2, 0, q^(1/2)] / EllipticTheta[ 2, 0, q^(3/2)]^3, {q, 0, n}]; (* Michael Somos, May 22 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<-1, 0, n++; A = x * O(x^n); polcoeff( 6*x + eta(x + A)^5 * eta(x^3 + A) / (eta(x^2 + A) * eta(x^6 + A)^5), n))}; /* Michael Somos, May 22 2015 */
(PARI) {a(n) = my(A); if( n<-1, 0, n++; A = x * O(x^n); polcoeff( -2*x + (eta(x^2 + A) * eta(x^3 + A)^3 / (eta(x + A) * eta(x^6 + A)^3))^3, n))}; /* Michael Somos, May 22 2015 */
CROSSREFS
KEYWORD
sign
STATUS
approved
McKay-Thompson series of class 12B for the Monster group with a(0) = 5.
+10
4
1, 5, 6, -4, -3, 12, -8, -12, 30, -20, -30, 72, -46, -60, 156, -96, -117, 300, -188, -228, 552, -344, -420, 1008, -603, -732, 1770, -1048, -1245, 2976, -1776, -2088, 4908, -2900, -3420, 7992, -4658, -5460, 12756, -7408, -8583, 19944, -11564, -13344, 30756
OFFSET
-1,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of (1/q) * (phi(q)^3 * psi(-q)) / (phi(q^3) * psi(-q^3)^3) in powers of q where phi(), psi() are Ramanujan theta functions.
Expansion of eta(q^2)^14 / (eta(q)^5 * eta(q^3) * eta(q^4)^5 * eta(q^6)^2 * eta(q^12)) in powers of q.
Euler transform of period 12 sequence [ 5, -9, 6, -4, 5, -6, 5, -4, 6, -9, 5, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = 9 g(t) where q = exp(2 Pi i t) and g(t) is the g.f. for A164617.
Convolution of A113660 and A133637.
a(n) = -(-1)^n * A128632(n). - Michael Somos, May 20 2015
EXAMPLE
G.f. = 1/q + 5 + 6*q - 4*q^2 - 3*q^3 + 12*q^4 - 8*q^5 - 12*q^6 + 30*q^7 - 20*q^8 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ 2 EllipticTheta[ 3, 0, q]^3 EllipticTheta[ 2, Pi/4, q^(1/2)] / (EllipticTheta[ 3, 0, q^3] EllipticTheta[ 2, Pi/4, q^(3/2)]^3), {q, 0, n}]; (* Michael Somos, May 20 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<-1, 0, n++; A = x * O(x^n); polcoeff( eta(x^2 + A)^14 / (eta(x + A)^5 * eta(x^3 + A) * eta(x^4 + A)^5 * eta(x^6 + A)^2 * eta(x^12 + A)), n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Mar 05 2011
STATUS
approved
McKay-Thompson series of class 6E for the Monster group with a(0) = 7.
+10
4
1, 7, 6, 4, -3, -12, -8, 12, 30, 20, -30, -72, -46, 60, 156, 96, -117, -300, -188, 228, 552, 344, -420, -1008, -603, 732, 1770, 1048, -1245, -2976, -1776, 2088, 4908, 2900, -3420, -7992, -4658, 5460, 12756, 7408, -8583, -19944, -11564, 13344, 30756, 17744
OFFSET
-1,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-1) * a(q) * psi(q) / psi(q^3)^3 in powers of q where psi() is a Ramanujan theta function and a() is a cubic AGM theta function.
Expansion of 12 + eta(q)^5 * eta(q^3) / (eta(q^2) * eta(q^6)^5) in powers of q.
Convolution of A004016 and A258093.
EXAMPLE
G.f. = 1/q + 7 + 6*q + 4*q^2 - 3*q^3 - 12*q^4 - 8*q^5 + 12*q^6 + 30*q^7 + ...
MATHEMATICA
QP = QPochhammer; s = 4*q + (QP[q^2]*(QP[q^3]^3/(QP[q]*QP[q^6]^3)))^3 + O[q]^50; CoefficientList[s, q] (* Jean-François Alcover, Nov 15 2015, adapted from PARI *)
PROG
(PARI) {a(n) = my(A); if( n<-1, 0, n++; A = x * O(x^n); polcoeff( 4*x + (eta(x^2 + A) * eta(x^3 + A)^3 / (eta(x + A) * eta(x^6 + A)^3))^3, n))};
CROSSREFS
Essentially the same as A128633, A128632, A105559, A045488 and A007258.
KEYWORD
sign
AUTHOR
Michael Somos, May 19 2015
STATUS
approved

Search completed in 0.007 seconds