[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a126896 -id:a126896
     Sort: relevance | references | number | modified | created      Format: long | short | data
Numbers k for which (k!-3)/3 is prime.
+10
56
4, 6, 12, 16, 29, 34, 43, 111, 137, 181, 528, 2685, 39477, 43697
OFFSET
1,1
COMMENTS
Corresponding primes (k!-3)/3 are in A139057.
a(13) > 10000. The PFGW program has been used to certify all the terms up to a(12), using a deterministic test which exploits the factorization of a(n) + 1. - Giovanni Resta, Mar 28 2014
98166 is a member of the sequence but its index is not yet determined. The interval where sieving and tests were not run is [60000,90000]. - Serge Batalov, Feb 24 2015
LINKS
C. Caldwell. The Prime database entry for the prime generated by a(i)=98166.
MATHEMATICA
a = {}; Do[If[PrimeQ[(-3 + n!)/3], AppendTo[a, n]], {n, 1, 1000}]; a
PROG
(PARI) for(n=1, 1000, if(floor(n!/3-1)==n!/3-1, if(ispseudoprime(n!/3-1), print(n)))) \\ Derek Orr, Mar 28 2014
CROSSREFS
Cf. n!/m-1 is a prime: A002982, A082671, A139056, A139199-A139205.
Cf. m*n!-1 is a prime: A076133, A076134, A099350, A099351, A180627-A180631.
Cf. m*n!+1 is a prime: A051915, A076679-A076683, A178488, A180626, A126896.
KEYWORD
nonn,more
AUTHOR
Artur Jasinski, Apr 07 2008
EXTENSIONS
Definition corrected by Derek Orr, Mar 28 2014
a(8)-a(11) from Derek Orr, Mar 28 2014
a(12) from Giovanni Resta, Mar 28 2014
a(13)-a(14) from Serge Batalov, Feb 24 2015
STATUS
approved
Numbers k such that 2*k! + 1 is prime.
+10
12
0, 1, 2, 3, 5, 12, 18, 35, 51, 53, 78, 209, 396, 4166, 9091, 9587, 13357, 15917, 17652, 46127
OFFSET
1,3
COMMENTS
Used PrimeForm to prove primality for n = 4166 (classical N-1 test). - David Radcliffe, May 28 2007
EXAMPLE
k = 5 is here because 2*5! + 1 = 241 is prime.
MATHEMATICA
Select[Range[0, 400], PrimeQ[2*#! + 1] &] (* Vladimir Joseph Stephan Orlovsky, Feb 13 2012 *)
PROG
(Magma) [n: n in [0..1000] | IsPrime(2*Factorial(n) +1)]; // Vincenzo Librandi, Feb 21 2015
(PARI) is(k) = ispseudoprime(2*k!+1); \\ Jinyuan Wang, Feb 05 2020
KEYWORD
nonn,more
AUTHOR
Labos Elemer, Dec 18 1999
EXTENSIONS
4166 from David Radcliffe, May 28 2007
More terms from Serge Batalov, Feb 18 2015
STATUS
approved
Numbers k such that 4*k! + 1 is prime.
+10
11
0, 1, 4, 7, 8, 9, 13, 16, 28, 54, 86, 129, 190, 351, 466, 697, 938, 1510, 2748, 2878, 3396, 4057, 4384, 5534, 7069, 10364
OFFSET
1,3
COMMENTS
a(25) > 6311. - Jinyuan Wang, Feb 06 2020
EXAMPLE
k = 7 is a term because 4*7! + 1 = 20161 is prime.
MATHEMATICA
Select[Range[5000], PrimeQ[4#!+1]&] (* Harvey P. Dale, Mar 23 2011 *)
PROG
(PARI) is(k) = ispseudoprime(4*k!+1); \\ Jinyuan Wang, Feb 06 2020
CROSSREFS
Cf. m*n!-1 is a prime: A076133, A076134, A099350, A099351, A180627-A180631.
Cf. m*n!+1 is a prime: A051915, A076679-A076683, A178488, A180626, A126896.
Cf. n!/m-1 is a prime: A002982, A082671, A139056, A139199-A139205.
KEYWORD
nonn,more
AUTHOR
Phillip L. Poplin (plpoplin(AT)bellsouth.net), Oct 25 2002
EXTENSIONS
Corrected (added missed terms 2748, 2878) by Serge Batalov, Feb 24 2015
a(24) from Jinyuan Wang, Feb 06 2020
a(25)-a(26) from Michael S. Branicky, Jul 04 2024
STATUS
approved
Numbers k such that 3*k! + 1 is prime.
+10
9
2, 3, 4, 6, 7, 9, 10, 13, 23, 25, 32, 38, 40, 47, 96, 3442, 4048, 4522, 4887, 7033, 9528, 12915, 31762
OFFSET
1,1
COMMENTS
a(24) > 50000. - Roger Karpin, Nov 13 2016
EXAMPLE
k = 6 is here because 3*6! + 1 = 2161 is prime.
PROG
(PARI) isok(n) = isprime(3*n! + 1); \\ Michel Marcus, Nov 13 2016
(PFGW) ABC2 3*$a!+1
a: from 1 to 1000 // Jinyuan Wang, Feb 05 2020
KEYWORD
nonn,more
AUTHOR
Phillip L. Poplin (plpoplin(AT)bellsouth.net), Oct 25 2002
EXTENSIONS
More terms from Serge Batalov, Feb 18 2015
a(20)-a(23) from Roger Karpin, Nov 13 2016
STATUS
approved
Numbers k such that 7*k! + 1 is prime.
+10
9
3, 7, 8, 15, 19, 29, 36, 43, 51, 158, 160, 203, 432, 909, 1235, 3209, 8715, 9707
OFFSET
1,1
COMMENTS
a(17) > 5830. - Jinyuan Wang, Feb 05 2020
a(19) > 12000. - Michael S. Branicky, Jul 04 2024
EXAMPLE
k = 3 is here because 7*3! + 1 = 43 is prime.
PROG
(PARI) is(k) = ispseudoprime(7*k!+1); \\ Jinyuan Wang, Feb 05 2020
(Python)
from sympy import isprime
from math import factorial
def aupto(m): return [k for k in range(m+1) if isprime(7*factorial(k)+1)]
print(aupto(300)) # Michael S. Branicky, Mar 07 2021
KEYWORD
nonn,more
AUTHOR
Phillip L. Poplin (plpoplin(AT)bellsouth.net), Oct 25 2002
EXTENSIONS
a(17)-a(18) from Michael S. Branicky, Jul 04 2024
STATUS
approved
Numbers k such that 8*k! + 1 is prime.
+10
9
2, 4, 9, 10, 11, 12, 15, 25, 31, 46, 53, 78, 318, 615, 955, 1646, 2669, 2672, 3515, 7689
OFFSET
1,1
COMMENTS
a(20) > 3810. - Jinyuan Wang, Feb 05 2020
a(21) > 12000. - Michael S. Branicky, Jul 03 2024
MATHEMATICA
fQ[n_] := PrimeQ[8 n! + 1]; k = 0; lst = {}; While[k < 1501, If[ fQ@k, AppendTo[lst, k]; Print@k]; k++ ]; lst
PROG
(PARI) for(k=1, 999, ispseudoprime(8*k!+1) & print1(k, ", "))
(PFGW) ABC2 8*$a!+1
a: from 1 to 1000 // Jinyuan Wang, Feb 05 2020
KEYWORD
nonn,hard,more
AUTHOR
Robert G. Wilson v, Sep 13 2010 and M. F. Hasler, Sep 16 2010
EXTENSIONS
a(16)-a(19) from Jinyuan Wang, Feb 05 2020
a(20) from Michael S. Branicky, Jul 02 2024
STATUS
approved
Numbers k such that 9*k! + 1 is prime.
+10
9
2, 6, 7, 10, 13, 15, 24, 29, 33, 44, 98, 300, 548, 942, 1099, 1176, 1632, 1794, 3676, 3768, 4804, 6499, 8049, 8164, 8917, 10270, 11610, 11959
OFFSET
1,1
COMMENTS
Tested to 4500. - Robert G. Wilson v, Sep 28 2010
a(22) > 5235. - Jinyuan Wang, Feb 05 2020
MATHEMATICA
fQ[n_] := PrimeQ[9 n! + 1]; k = 0; lst = {}; While[k < 1501, If[ fQ@k, AppendTo[lst, k]; Print@k]; k++ ]; lst
PROG
(PARI) is(k) = ispseudoprime(9*k!+1); \\ Jinyuan Wang, Feb 05 2020
KEYWORD
nonn,more
AUTHOR
Robert G. Wilson v, Sep 13 2010
EXTENSIONS
a(17)-a(20) from Robert G. Wilson v, Sep 28 2010
a(21) from Jinyuan Wang, Feb 05 2020
a(22) from Michael S. Branicky, May 27 2023
a(23)-a(28) from Michael S. Branicky, Jul 12 2024
STATUS
approved
Numbers k such that 5*k! + 1 is prime.
+10
7
2, 3, 5, 10, 11, 12, 17, 34, 74, 136, 155, 259, 271, 290, 352, 479, 494, 677, 776, 862, 921, 932, 2211, 3927, 4688, 12567
OFFSET
1,1
COMMENTS
a(26) > 4700. - Jinyuan Wang, Feb 04 2020
EXAMPLE
k = 3 is here because 5*3! + 1 = 31 is prime.
PROG
(PARI) is(k) = ispseudoprime(5*k!+1); \\ Jinyuan Wang, Feb 04 2020
KEYWORD
nonn,more
AUTHOR
Phillip L. Poplin (plpoplin(AT)bellsouth.net), Oct 25 2002
EXTENSIONS
a(25) from Jinyuan Wang, Feb 04 2020
a(26) from Michael S. Branicky, Jul 03 2024
STATUS
approved
Numbers k such that 6*k! + 1 is prime.
+10
7
0, 1, 2, 3, 7, 8, 9, 12, 13, 18, 24, 38, 48, 60, 113, 196, 210, 391, 681, 739, 778, 1653, 1778, 1796, 1820, 2391, 2505, 4595, 8937
OFFSET
1,3
COMMENTS
a(29) > 5800. - Jinyuan Wang, Feb 05 2020
a(30) > 12000. - Michael S. Branicky, Jul 04 2024
EXAMPLE
k = 3 is here because 6*3! + 1 = 37 is prime.
PROG
(PARI) is(k) = ispseudoprime(6*k!+1); \\ Jinyuan Wang, Feb 05 2020
KEYWORD
nonn,more
AUTHOR
Phillip L. Poplin (plpoplin(AT)bellsouth.net), Oct 25 2002
EXTENSIONS
a(26) inserted by and a(29) from Michael S. Branicky, Jul 03 2024
STATUS
approved

Search completed in 0.009 seconds