[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a113949 -id:a113949
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of non-equivalent n-fold branched coverings of the projective plane with two cyclic branch points.
+10
3
1, 2, 3, 8, 16, 64, 264, 1580, 10648, 84320, 750380, 7455312, 81566928, 974988768, 12636692720, 176505029160, 2642791002368, 42224138928712, 716984262871596, 12893605560786944
OFFSET
1,2
LINKS
J. H. Kwak, A. Mednykh and V. Liskovets, Enumeration of branched coverings of nonorientable surfaces with cyclic branch points, SIAM J. Discrete Math., Vol. 19, No. 2 (2005), 388-398.
FORMULA
a(n) = (1/n)*Sum_{k|n} gcd(2, n/k)*phi(n/k)^2*(n/k)^(k-1) * Sum_{i=0..k-1} i!*(k-i-1)! where phi(n) is the Euler function A000010.
a(n) ~ 2*n!/n^2. - Vaclav Kotesovec, Oct 27 2024
MATHEMATICA
a[n_] := 1/n DivisorSum[n, GCD[2, n/#]*EulerPhi[n/#]^2*(n/#)^(#-1) Sum[i! * (#-i- 1)!, {i, 0, #-1}]&]; Array[a, 20] (* Jean-François Alcover, Oct 05 2016 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Valery A. Liskovets, Nov 10 2005
STATUS
approved
Number of n-fold branched coverings of the Klein bottle with r cyclic branch points (n,r>=1); array read by downward antidiagonals.
+10
2
1, 1, 0, 1, 4, 5, 1, 0, 13, 0, 1, 4, 23, 104, 44, 1, 0, 49, 0, 1256, 0, 1, 4, 95, 2720, 27344, 30608, 1266, 1, 0, 193, 0, 666656, 0, 1071540, 0, 1, 4, 383, 93824, 15911744, 415444544, 743214744
OFFSET
1,5
COMMENTS
The odd bisection of the first column is A113948.
REFERENCES
J. H. Kwak, A. Mednykh and V. Liskovets, Enumeration of branched coverings of nonorientable surfaces with cyclic branch points, SIAM J. Discrete Math., Vol. 19, No. 2 (2005), 388-398.
FORMULA
E.g. for n=7 and r>=1, a(7, r)=2*720^r+(-1)^r*2*120^r+2*48^r+(-1)^r*36^r+6^r (more generally, a(7, r, h)=7^(h-2)*(2*720^m+(-1)^r*2*120^m+2*48^m+(-1)^r*36^m+6^r) for 7-sheeted coverings of the non-orientable surface of genus h>=1, where m=h+r-2).
EXAMPLE
The array begins:
1 1 1 1 1 1 ...
0 4 0 4 0 4 ...
5 13 23 49 95 193 ...
0 104 0 2720 0 93824 ...
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Valery A. Liskovets, Nov 10 2005
STATUS
approved

Search completed in 0.008 seconds