[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a111519 -id:a111519
     Sort: relevance | references | number | modified | created      Format: long | short | data
Sequence is {a(0,n)}, where a(m,0)=1, a(m,n) = a(m-1,n)+a(m,n-1) and a(0,n+1) is such that a(n+1,n+1) = a(0,n).
+10
5
1, 0, -3, -4, 7, 11, -62, -14, 581, -1235, -4175, 32520, -48359, -443625, 3136662, -4834644, -60319241, 506792496, -1210299173, -10327456109, 122982395262, -496826354929, -1709350378156, 39417717346686, -259877263864213, 162788318972691, 14331409095176010
OFFSET
0,3
EXAMPLE
a(0,n): 1,0,-3,-4,7,...
a(1,n): 1,1,-2,-6,1,...
a(2,n): 1,2,0,-6,-5,...
a(3,n): 1,3,3,-3,-8,...
a(4,n): 1,4,7,4,-4,...
Main diagonal is 1,1,0,-3,-4,..., which is 1 followed by sequence a(0,n).
MAPLE
A111518T := proc(nmax) local a, m, n; a := array(0..nmax, 0..nmax) ; for m from 0 to nmax do a[m, 0] := 1 ; od ; for n from 1 to nmax do a[n, n] := a[0, n-1] ; for m from n+1 to nmax do a[m, n] := a[m-1, n]+a[m, n-1] ; od ; for m from n-1 to 0 by -1 do a[m, n] := a[m+1, n]-a[m+1, n-1] ; od ; od ; RETURN(a) ; end: nmax := 50 ; a := A111518T(nmax) ; r := 0 ; for n from 0 to nmax do printf("%d, ", a[r, n]) ; od; # R. J. Mathar, Sep 26 2006
MATHEMATICA
nmax = 26;
a[_, 0] = 1;
a[m_ /; m > 0, n_ /; n > 0] := a[m, n] = a[m - 1, n] + a[m, n - 1];
sol = Solve[Table[a[n + 1, n + 1] == a[0, n], {n, 0, nmax}], Table[a[0, n], {n, 1, nmax+1}], Integers] // First;
Do[a[m, n] = a[m, n] /. sol, {m, 0, nmax}, {n, 0, nmax}];
Table[a[0, n], {n, 0, nmax}] (* Jean-François Alcover, Sep 21 2020 *)
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Leroy Quet, Aug 05 2005
EXTENSIONS
More terms from R. J. Mathar, Sep 26 2006
STATUS
approved
Sequence is {a(2,n)}, where a(m,n) is defined at sequence A111518.
+10
5
1, 2, 0, -6, -5, 7, -43, -107, 410, -308, -5201, 22426, 1694, -462663, 2209642, 47303, -62434277, 381876639, -384111618, -11477555984, 100411394912, -284526009121, -2378813791310, 34944615773187, -187609218526529, -247374733853554, 14024268845995431
OFFSET
0,2
EXAMPLE
a(0,n): 1,0,-3,-4,7,...
a(1,n): 1,1,-2,-6,1,...
a(2,n): 1,2,0,-6,-5,...
a(3,n): 1,3,3,-3,-8,...
a(4,n): 1,4,7,4,-4,...
Main diagonal is 1,1,0,-3,-4,..., which is 1 followed by sequence a(0,n).
MAPLE
A111520T := proc(nmax) local a, m, n; a := array(0..nmax, 0..nmax) ; for m from 0 to nmax do a[m, 0] := 1 ; od ; for n from 1 to nmax do a[n, n] := a[0, n-1] ; for m from n+1 to nmax do a[m, n] := a[m-1, n]+a[m, n-1] ; od ; for m from n-1 to 0 by -1 do a[m, n] := a[m+1, n]-a[m+1, n-1] ; od ; od ; RETURN(a) ; end: nmax := 50 ; a := A111520T(nmax) ; r := 2 ; for n from 0 to nmax do printf("%d, ", a[r, n]) ; od; # R. J. Mathar, Sep 26 2006
MATHEMATICA
nmax = 26;
a[_, 0] = 1;
a[m_ /; m > 0, n_ /; n > 0] := a[m, n] = a[m - 1, n] + a[m, n - 1];
sol = Solve[Table[a[n + 1, n + 1] == a[0, n], {n, 0, nmax}], Table[a[0, n], {n, 1, nmax + 1}], Integers] // First;
Do[a[m, n] = a[m, n] /. sol, {m, 0, nmax}, {n, 0, nmax}];
Table[a[2, n], {n, 0, nmax}] (* Jean-François Alcover, Sep 21 2020 *)
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Leroy Quet, Aug 05 2005
EXTENSIONS
More terms from R. J. Mathar, Sep 26 2006
STATUS
approved
Sequence is {a(3,n)}, where a(m,n) is defined at sequence A111518.
+10
5
1, 3, 3, -3, -8, -1, -44, -151, 259, -49, -5250, 17176, 18870, -443793, 1765849, 1813152, -60621125, 321255514, -62856104, -11540412088, 88870982824, -195655026297, -2574468817607, 32370146955580, -155239071570949, -402613805424503, 13621655040570928
OFFSET
0,2
EXAMPLE
a(0,n): 1,0,-3,-4,7,...
a(1,n): 1,1,-2,-6,1,...
a(2,n): 1,2,0,-6,-5,...
a(3,n): 1,3,3,-3,-8,...
a(4,n): 1,4,7,4,-4,...
Main diagonal is 1,1,0,-3,-4,..., which is 1 followed by sequence a(0,n).
MAPLE
A111521T := proc(nmax) local a, m, n; a := array(0..nmax, 0..nmax) ; for m from 0 to nmax do a[m, 0] := 1 ; od ; for n from 1 to nmax do a[n, n] := a[0, n-1] ; for m from n+1 to nmax do a[m, n] := a[m-1, n]+a[m, n-1] ; od ; for m from n-1 to 0 by -1 do a[m, n] := a[m+1, n]-a[m+1, n-1] ; od ; od ; RETURN(a) ; end: nmax := 50 ; a := A111521T(nmax) ; m := 3 ; for n from 0 to nmax do printf("%d, ", a[m, n]) ; od; # R. J. Mathar, Sep 26 2006
MATHEMATICA
nmax = 26;
a[_, 0] = 1;
a[m_ /; m > 0, n_ /; n > 0] := a[m, n] = a[m - 1, n] + a[m, n - 1];
sol = Solve[Table[a[n + 1, n + 1] == a[0, n], {n, 0, nmax}], Table[a[0, n], {n, 1, nmax + 1}], Integers] // First;
Do[a[m, n] = a[m, n] /. sol, {m, 0, nmax}, {n, 0, nmax}];
Table[a[3, n], {n, 0, nmax}] (* Jean-François Alcover, Sep 21 2020 *)
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Leroy Quet, Aug 05 2005
EXTENSIONS
More terms from R. J. Mathar, Sep 26 2006
STATUS
approved
Sequence is {a(4,n)}, where a(m,n) is defined at sequence A111518.
+10
5
1, 4, 7, 4, -4, -5, -49, -200, 59, 10, -5240, 11936, 30806, -412987, 1352862, 3166014, -57455111, 263800403, 200944299, -11339467789, 77531515035, -118123511262, -2692592328869, 29677554626711, -125561516944238, -528175322368741, 13093479718202187
OFFSET
0,2
EXAMPLE
a(0,n): 1,0,-3,-4,7,...
a(1,n): 1,1,-2,-6,1,...
a(2,n): 1,2,0,-6,-5,...
a(3,n): 1,3,3,-3,-8,...
a(4,n): 1,4,7,4,-4,...
Main diagonal is 1,1,0,-3,-4,..., which is 1 followed by sequence a(0,n).
MAPLE
A111522T := proc(nmax) local a, m, n; a := array(0..nmax, 0..nmax) ; for m from 0 to nmax do a[m, 0] := 1 ; od ; for n from 1 to nmax do a[n, n] := a[0, n-1] ; for m from n+1 to nmax do a[m, n] := a[m-1, n]+a[m, n-1] ; od ; for m from n-1 to 0 by -1 do a[m, n] := a[m+1, n]-a[m+1, n-1] ; od ; od ; RETURN(a) ; end: nmax := 50 ; a := A111522T(nmax) ; m := 4 ; for n from 0 to nmax do printf("%d, ", a[m, n]) ; od; # R. J. Mathar, Sep 26 2006
MATHEMATICA
nmax = 26;
a[_, 0] = 1;
a[m_ /; m > 0, n_ /; n > 0] := a[m, n] = a[m - 1, n] + a[m, n - 1];
sol = Solve[Table[a[n + 1, n + 1] == a[0, n], {n, 0, nmax}], Table[a[0, n], {n, 1, nmax + 1}], Integers] // First;
Do[a[m, n] = a[m, n] /. sol, {m, 0, nmax}, {n, 0, nmax}];
Table[a[4, n], {n, 0, nmax}] (* Jean-François Alcover, Sep 21 2020 *)
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Leroy Quet, Aug 05 2005
EXTENSIONS
More terms from R. J. Mathar, Sep 26 2006
STATUS
approved
Sequence is {a(5,n)}, where a(m,n) is defined at sequence A111518.
+10
5
1, 5, 12, 16, 12, 7, -42, -242, -183, -173, -5413, 6523, 37329, -375658, 977204, 4143218, -53311893, 210488510, 411432809, -10928034980, 66603480055, -51520031207, -2744112360076, 26933442266635, -98628074677603, -626803397046344, 12466676321155843, -88760048121704842
OFFSET
0,2
EXAMPLE
a(0,n): 1,0,-3,-4,7,...
a(1,n): 1,1,-2,-6,1,...
a(2,n): 1,2,0,-6,-5,...
a(3,n): 1,3,3,-3,-8,...
a(4,n): 1,4,7,4,-4,...
Main diagonal is 1,1,0,-3,-4,..., which is 1 followed by sequence a(0,n).
MAPLE
A111523T := proc(nmax) local a, m, n; a := array(0..nmax, 0..nmax) ; for m from 0 to nmax do a[m, 0] := 1 ; od ; for n from 1 to nmax do a[n, n] := a[0, n-1] ; for m from n+1 to nmax do a[m, n] := a[m-1, n]+a[m, n-1] ; od ; for m from n-1 to 0 by -1 do a[m, n] := a[m+1, n]-a[m+1, n-1] ; od ; od ; RETURN(a) ; end: nmax := 50 ; a := A111523T(nmax) ; m := 5 ; for n from 0 to nmax do printf("%d, ", a[m, n]) ; od; # R. J. Mathar, Sep 26 2006
MATHEMATICA
nmax = 27;
a[_, 0] = 1;
a[m_ /; m > 0, n_ /; n > 0] := a[m, n] = a[m - 1, n] + a[m, n - 1];
sol = Solve[Table[a[n + 1, n + 1] == a[0, n], {n, 0, nmax}], Table[a[0, n], {n, 1, nmax + 1}], Integers] // First;
Do[a[m, n] = a[m, n] /. sol, {m, 0, nmax}, {n, 0, nmax}];
Table[a[5, n], {n, 0, nmax}] (* Jean-François Alcover, Sep 21 2020 *)
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Leroy Quet, Aug 05 2005
EXTENSIONS
More terms from R. J. Mathar, Sep 26 2006
STATUS
approved

Search completed in 0.004 seconds