[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a110566 -id:a110566
     Sort: relevance | references | number | modified | created      Format: long | short | data
Records in A110566 (lcm{1,2,...,n}/denominator of harmonic number H(n)).
+20
3
1, 3, 15, 45, 77, 275, 931, 1725, 1935, 5805, 29025, 41175, 166803, 1039533, 1162047, 91801713, 419498967, 2183383175, 19691916585, 216611082435, 2382721906785, 113804487945521, 22211221792244703, 422013214052649357, 425137351586922079, 936039253001457601
OFFSET
1,2
LINKS
FORMULA
a(n) = A110566(A112809(n)).
MATHEMATICA
c = 0; a = h = 1; t = {}; Do[a = LCM[a, n]; h = h + 1/n; b = a/Denominator[h]; If[b > c, c = b; AppendTo[t, b]], {n, 10^6}]; t
PROG
(PARI) lista(nn) = {rec = 0; for (n=1, nn, new = lcm(vector(n, k, k))/denominator(sum(k=1, n, 1/k)); if (new > rec, print1(new, ", "); rec = new); ); } \\ Michel Marcus, Mar 07 2018
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Sep 19 2005
EXTENSIONS
a(25)-a(26) from Max Alekseyev, Nov 29 2013
STATUS
approved
Terms of A110566 grouped.
+20
2
1, 3, 1, 3, 15, 45, 15, 3, 1, 11, 77, 7, 1, 3, 9, 27, 9, 3, 33, 11, 1, 25, 5, 55, 275, 25, 1, 13, 39, 3, 9, 27, 9, 3, 1, 17, 1, 49, 7, 49, 931, 19, 1, 11, 319, 11, 319, 11, 1, 3, 75, 1725, 345, 15, 645, 1935, 5805, 29025, 675, 41175, 13725, 549, 20313, 6771, 183, 3, 411, 15207
OFFSET
1,2
COMMENTS
A110566: LCM{1,2,...,n}/denominator of harmonic number H(n).
The factor of change from a(n) to a(n+1) is: 3,3,3,5,3,3,5,3,11,7,11,7,3,3,3,3,3,11,3,11,25,5,11,5,11,25,13,3,13,3,3,3,3,..., . see A110268.
MATHEMATICA
f[n_] := LCM @@ Range[n]/Denominator[HarmonicNumber[n]]; Flatten[Union /@ Split[Table[f[n], {n, 703}]]]
CROSSREFS
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Sep 20 2005
STATUS
approved
Consider the sequence A110566: lcm{1,2,...,n}/denominator of harmonic number H(n). a(n) is the factor that is changed going from A110566(n) to A110566(n+1).
+20
1
1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 5, 3, 1, 1, 3, 5, 1, 3, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 11, 1, 1, 1, 1, 7, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 11, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 25, 1, 1, 1, 1, 5
OFFSET
1,5
COMMENTS
a(n) is always an odd prime power, A061345.
EXAMPLE
A110566(4) through A110566(10) are {1,1,3,3,3,1,1}, therefore the factors are 1,3,1,1,3,1.
MATHEMATICA
f[n_] := LCM @@ Range[n]/Denominator[HarmonicNumber[n]]; Table[ LCM[f[n], f[n + 1]]/GCD[f[n], f[n + 1]], {n, 104}]
PROG
(PARI) f(n) = lcm(vector(n, k, k))/denominator(sum(k=1, n, 1/k));
a(n) = my(x = f(n+1)/f(n)); if (x > 1, x, 1/x); \\ Michel Marcus, Mar 07 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Sep 17 2005
STATUS
approved
Positions of records in A110566.
+20
1
1, 6, 20, 21, 42, 120, 342, 506, 567, 594, 600, 610, 2184, 4896, 6108, 6162, 6498, 12760, 14067, 14157, 14201, 93942, 123462, 123519, 734413, 2451397, 4591010, 11571129, 13346540, 13619348, 13619790, 46180567
OFFSET
1,2
MATHEMATICA
c = 0; a = h = 1; t = {}; Do[a = LCM[a, n]; h = h + 1/n; b = a/Denominator[h]; If[b > c, c = b; AppendTo[t, n]], {n, 10^6}]; t
PROG
(PARI) lista(nn) = {rec = 0; for (n=1, nn, new = lcm(vector(n, k, k))/denominator(sum(k=1, n, 1/k)); if (new > rec, print1(n, ", "); rec = new); ); } \\ Michel Marcus, Mar 07 2018
KEYWORD
more,nonn
AUTHOR
Robert G. Wilson v, Sep 19 2005
EXTENSIONS
a(27)-a(28) from Amiram Eldar, Dec 18 2018
a(29)-a(31) from Chai Wah Wu, Mar 08 2021
a(32) from Chai Wah Wu, Mar 14 2021
STATUS
approved
a(n) is length of n-th run in A110566.
+20
1
5, 3, 9, 2, 1, 3, 1, 2, 6, 9, 2, 5, 5, 9, 3, 3, 3, 5, 4, 7, 12, 5, 5, 10, 1, 4, 31, 6, 7, 20, 9, 9, 9, 27, 29, 17, 5, 7, 35, 6, 1, 18, 2, 14, 29, 29, 29, 20, 2, 14, 6, 19, 4, 30, 8, 27, 6, 2, 8, 11, 4, 4, 19, 18, 5, 14, 18, 26, 11, 72, 10, 19, 6, 11, 22, 11, 33, 6, 5, 22, 4, 7, 99, 97, 2, 44, 9
OFFSET
1,1
MATHEMATICA
f[n_] := LCM @@ Range[n]/Denominator[HarmonicNumber[n]]; Length /@ Split[Table[f[n], {n, 1220}]]
CROSSREFS
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Sep 20 2005
EXTENSIONS
Edited by Don Reble, Nov 08 2005
Definition clarified by Omar E. Pol, Dec 26 2008
STATUS
approved
a(n) is the least index k such that the n-th odd squarefree number A056911(n) divides A110566(k).
+20
0
1, 6, 20, 42, 33, 156, 20, 272, 342, 2058, 506, 377, 930, 77, 14406, 629, 162, 1640, 559, 2162, 4624, 1166, 110, 6498, 3422, 610, 342732, 4422, 506, 4970, 5256, 42, 6162, 6806
OFFSET
1,2
COMMENTS
According to a theorem proven by Shiu (2016), a(n) exists for all n.
LINKS
Peter Shiu, The denominators of harmonic numbers, arXiv:1607.02863 [math.NT], 2016.
EXAMPLE
n A056911(n) a(n) = k A110566(k)
-- ---------- -------- --------------------------
1 1 1 1 = 1 * 1
2 3 6 3 = 3 * 1
3 5 20 15 = 5 * 3
4 7 42 77 = 7 * 11
5 11 33 11 = 11 * 1
6 13 156 13 = 13 * 1
7 15 20 15 = 15 * 1
8 17 272 17 = 17 * 1
9 19 342 931 = 19 * 49
10 21 2058 1911 = 21 * 91
11 23 506 1725 = 23 * 75
12 29 377 319 = 29 * 11
13 31 930 3751 = 31 * 121
14 33 77 33 = 33 * 1
15 35 14406 2430488445 = 35 * 69442527
16 37 629 20313 = 37 * 549
17 39 162 39 = 39 * 1
18 41 1640 6519 = 41 * 159
19 43 559 645 = 43 * 15
20 47 2162 12831 = 47 * 273
21 51 4624 9537 = 51 * 187
22 53 1166 53 = 53 * 1
23 55 110 55 = 55 * 1
24 57 6498 419498967 = 57 * 7359631
25 59 3422 6431 = 59 * 109
26 61 610 41175 = 61 * 675
27 65 342732 974285 = 65 * 14989
28 67 4422 2211 = 67 * 33
29 69 506 1725 = 69 * 25
30 71 4970 2343 = 71 * 33
31 73 5256 7227 = 73 * 99
32 77 42 77 = 77 * 1
33 79 6162 91801713 = 79 * 1162047
34 83 6806 1200097 = 83 * 14459
MATHEMATICA
max = 64; osf = Select[Range[1, 64, 2], SquareFreeQ]; m = Length[osf]; c = 0; s = Table[0, {m}]; h = 0; lcm = 1; n = 1; While[c < m, h += 1/n; lcm = LCM[lcm, n]; r = lcm/Denominator[h]; Do[If[s[[k]] == 0 && Divisible[r, osf[[k]]], c++; s[[k]] = n], {k, 1, m}]; n++]; s
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Amiram Eldar, Jan 29 2021
STATUS
approved
a(n) = (1/1 + 1/2 + ... + 1/n)*lcm{1,2,...,n}.
+10
18
1, 3, 11, 25, 137, 147, 1089, 2283, 7129, 7381, 83711, 86021, 1145993, 1171733, 1195757, 2436559, 42142223, 42822903, 825887397, 837527025, 848612385, 859193865, 19994251455, 20217344325, 102157567401, 103187226801, 312536252003, 315404588903, 9227046511387
OFFSET
1,2
COMMENTS
First column of A027446. - Eric Desbiaux, Mar 29 2013
From Amiram Eldar and Thomas Ordowski, Aug 07 2019: (Start)
By Wolstenholme's theorem, if p > 3 is a prime, then p^2 | a(p-1).
Conjecture: for n > 3, if n^2 | a(n-1), then n is a prime.
Note that if n = p^2 with prime p > 3, then n | a(n-1).
It seems that composite numbers n such that n | a(n-1) are only the squares n = p^2 of primes p > 3.
Primes p such that p^3 | a(p-1) are the Wolstenholme primes A088164.
The n-th triangular number n(n+1)/2 | a(n) for n = 1, 2, 6, 4422, ... (End)
LINKS
Frank A. Haight, and Robert B. Jones., "A probabilistic treatment of qualitative data with special reference to word association tests." Journal of Mathematical Psychology 11.3 (1974): 237-244. [Denominators of fractions in Eq. 21.] [Annotated scanned copy]
Frank A. Haight and N. J. A. Sloane, Correspondence, 1975
FORMULA
a(n) = A001008(n)*A110566(n). - Arkadiusz Wesolowski, Mar 29 2012
a(n) = Sum_{k=1..n} lcm(1,2,...,n)/k. - Thomas Ordowski, Aug 07 2019
MAPLE
a:= n-> add(1/k, k=1..n)*ilcm($1..n):
seq(a(n), n=1..30); # Alois P. Heinz, Mar 14 2013
MATHEMATICA
Table[HarmonicNumber[n]*LCM @@ Range[n], {n, 27}] (* Arkadiusz Wesolowski, Mar 29 2012 *)
PROG
(GAP) List([1..30], n->Sum([1..n], k->1/k)*Lcm([1..n])); # Muniru A Asiru, Apr 02 2018
(PARI) a(n) = sum(k=1, n, 1/k)*lcm([1..n]); \\ Michel Marcus, Apr 02 2018
(Magma) [HarmonicNumber(n)*Lcm([1..n]):n in [1..30]]; // Marius A. Burtea, Aug 07 2019
CROSSREFS
Differs from A096617 at 7th term.
KEYWORD
nonn
STATUS
approved
Numbers k such that lcm(1,2,3,...,k) equals the denominator of the k-th harmonic number H(k).
+10
18
1, 2, 3, 4, 5, 9, 10, 11, 12, 13, 14, 15, 16, 17, 27, 28, 29, 30, 31, 32, 49, 50, 51, 52, 53, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149
OFFSET
1,2
COMMENTS
Numbers k such that A110566(k) = 1.
Shiu (2016) conjectured that this sequence is infinite. - Amiram Eldar, Feb 02 2021
LINKS
Peter Shiu, The denominators of harmonic numbers, arXiv:1607.02863 [math.NT], 2016.
Eric Weisstein's World of Mathematics, Harmonic Number.
MATHEMATICA
Select[Range[250], LCM@@Range[ # ]==Denominator[HarmonicNumber[ # ]]&]
PROG
(PARI) isok(n) = lcm(vector(n, i, i)) == denominator(sum(i=1, n, 1/i)); \\ Michel Marcus, Mar 07 2018
(Python)
from fractions import Fraction
from sympy import lcm
k, l, h, A098464_list = 1, 1, Fraction(1, 1), []
while k < 10**6:
if l == h.denominator:
A098464_list.append(k)
k += 1
l = lcm(l, k)
h += Fraction(1, k) # Chai Wah Wu, Mar 07 2021
CROSSREFS
Cf. A002805 (denominator of H(n)), A003418 (lcm(1, 2, ..., n)), A110566.
KEYWORD
easy,nonn
AUTHOR
T. D. Noe, Sep 09 2004
STATUS
approved
Least number k such that lcm{1,2,...,k}/denominator of harmonic number H(k) = 2n-1.
+10
14
1, 6, 105, 44, 63, 33, 156, 20, 272, 343, 38272753, 11881, 100, 66, 822, 28861, 77
OFFSET
1,2
COMMENTS
First occurrence of 2n-1 in A110566.
Sequence continues: a(18)=?, 1332, 162, 2758521, 24649, 21, a(24)=?, 294, a(26)=?, 1166, 110, 126059, 201957, 3660, 37553041, 344929, 296341, a(35)=?, 25155299, a(37)=?, 500, 42
MATHEMATICA
a = h = 1; t = Table[0, {100}]; Do[a = LCM[a, n]; h = h + 1/n; b = a/Denominator[h]; If[b < 101 && t[[(b + 1)/2]] == 0, t[[(b + 1)/2]] = n], {n, 500000}]; t
PROG
(Python)
from fractions import Fraction
from sympy import lcm
def A112822(n):
k, l, h = 1, 1, Fraction(1, 1)
while l != h.denominator*(2*n-1):
k += 1
l = lcm(l, k)
h += Fraction(1, k)
return k # Chai Wah Wu, Mar 06 2021
KEYWORD
nonn,more
AUTHOR
Robert G. Wilson v, Sep 15 2005
EXTENSIONS
a(11), a(32) from Max Alekseyev, Nov 29 2013
a(33)-a(34) from Chai Wah Wu, Mar 06 2021
a(36), a(38), a(39) from Chai Wah Wu, Mar 12 2021
STATUS
approved
Numbers k such that lcm(1,2,3,...,k)/3 equals the denominator of the k-th harmonic number H(k).
+10
13
6, 7, 8, 18, 19, 25, 26, 54, 55, 56, 57, 58, 59, 60, 61, 62, 72, 73, 74, 75, 76, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231
OFFSET
1,1
COMMENTS
When 3 occurs in A110566.
LINKS
MATHEMATICA
f[n_] := LCM @@ Range[n]/Denominator[ HarmonicNumber[n]]; Select[ Range[231], f[ # ] == 3 &]
PROG
(PARI) isok(n) = lcm(vector(n, i, i)) == 3*denominator(sum(i=1, n, 1/i)); \\ Michel Marcus, Mar 07 2018
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Sep 17 2005
STATUS
approved

Search completed in 0.010 seconds