[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a119589 -id:a119589
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = position of n in the lexicographical ordering A119589 of natural numbers from 1 to 100.
+20
3
1, 13, 24, 35, 46, 57, 68, 79, 90, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 3
OFFSET
1,2
COMMENTS
Inverse of the permutation A119589. - M. F. Hasler, Oct 26 2019
FORMULA
a(n) = a(n-1) + a(n-10) - a(n-11) for 21 < n < 100. - M. F. Hasler, Sep 03 2018
a(n) = k such that A119589(k) = n. - M. F. Hasler, Oct 26 2019
EXAMPLE
a(1) = 1
a(10) = 2 because "10" comes after "1"
a(100) = 3 because "100" comes after "10", but before "11"
PROG
(PARI) vecsort(vecsort(vector(100, n, Str(n)), , 1), , 1) \\ M. F. Hasler, Sep 03 2018, simplified Oct 25 2019
CROSSREFS
Cf. A119589 (integers 1..100 in lexicographical order).
Cf. A190016, A190017 (integers 1..10^4 in lexicographical order, and inverse).
KEYWORD
nonn,base,fini,full
AUTHOR
Dmitry Kamenetsky, Jun 01 2006, Jun 03 2006
STATUS
approved
Numbers 1 through 10000 sorted lexicographically in decimal representation.
+10
10
1, 10, 100, 1000, 10000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1009, 101, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1017, 1018, 1019, 102, 1020, 1021, 1022, 1023, 1024, 1025, 1026, 1027, 1028, 1029, 103, 1030, 1031, 1032, 1033, 1034, 1035, 1036
OFFSET
1,2
COMMENTS
A190017 = inverse permutation: a(A190017(n)) = A190017(a(n)) = n;
there are 11 fixed points: {1,9980,9981,9982,9983,9984,9985,9986,9987,9988,9989}.
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 1..10000 (full sequence)
Eric Weisstein, Lexicographic Order.
EXAMPLE
a(13) = 1008;
a(14) = 1009;
a(15) = 101;
a(16) = 1010;
a(17) = 1011;
largest term a(5) = 10000;
last term a(10000) = 9999, largest term lexicographically.
PROG
(Haskell)
import Data.Ord (comparing)
import Data.List (sortBy)
a190016 n = a190016_list !! (n-1)
a190016_list = sortBy (comparing show) [1..10000]
(PARI) eval(Set(vector(10^4, n, Str(n)))) \\ M. F. Hasler, Oct 25 2019
CROSSREFS
Cf. A119589 (same for 1..100); A190126 (base 2), A190128 (base 3), A190130 (base 8), A190132 (base 12), A190134 (base 16).
KEYWORD
nonn,base,fini,full
AUTHOR
Reinhard Zumkeller, May 06 2011
STATUS
approved
Inverse permutation to A190016: lexicographical ordering of integers 1 .. 10^4.
+10
5
1, 1113, 2224, 3335, 4446, 5557, 6668, 7779, 8890, 2, 114, 225, 336, 447, 558, 669, 780, 891, 1002, 1114, 1225, 1336, 1447, 1558, 1669, 1780, 1891, 2002, 2113, 2225, 2336, 2447, 2558, 2669, 2780, 2891, 3002, 3113, 3224, 3336, 3447, 3558, 3669, 3780, 3891
OFFSET
1,2
COMMENTS
a(A190016(n)) = A190016(a(n)) = n.
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 1..10000 (full sequence)
PROG
(Haskell)
import Data.List (elemIndex)
import Data.Maybe (fromJust)
a190017 n = a190017_list !! (n-1)
a190017_list =
map (succ . fromJust . (`elemIndex` a190016_list)) [1..10000]
(PARI) A190017=vecsort(A190016=vecsort(vector(10^4, n, Str(n)), , 1), , 1) \\ M. F. Hasler, Oct 26 2019
CROSSREFS
Cf. A190016 (inverse: integers 1..10^4 in lexicographical order).
Cf. A119589, A119590 (integers 1..100 in lexicographical order, and inverse).
KEYWORD
nonn,base,fini,full
AUTHOR
Reinhard Zumkeller, May 06 2011
STATUS
approved
Number subsets {0, ..., 10^k - 1} written in base 10 and sorted lexicographically, for k = 1, 2, ...
+10
2
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 2, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 3, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 4, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 5, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 6, 60, 61
OFFSET
0,3
COMMENTS
The sequence is the flattened form of an irregular table T(k, i). The rows for k >= 1 contain a permutation of the numbers 0 <= i <= 10^k - 1 which is defined by the lexicographical order of the numbers i written in base 10.
This "useless" order appears, for example, in a directory listing of numbered filenames, or after an ASCII sort of signatures of linear recurrences. The Perl program in the link computes this sequence and variations with different ranges and bases.
LINKS
Georg Fischer, Perl program which generates this sequence and its inverse.
EXAMPLE
Table T(k, i) begins:
k\i 0 1 2 3 ...
-------------------------
1: 0 1 2 3 ... 9
2: 0 1 10 11 ... 19 2 20 21 ... 99
3: 0 1 10 100 ... 109 11 110 111 ... 999
4: ...
PROG
(Perl) # cf. link
CROSSREFS
Cf. A119589 (like row k=2, but 1 <= i <= 100), A190016 (like row k=4, but 1 <= i <= 10000), A309590 (inverse)
KEYWORD
nonn,base,easy,tabf
AUTHOR
Georg Fischer, Mar 02 2019
STATUS
approved

Search completed in 0.007 seconds