[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a117530 -id:a117530
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of primes in the n-th row of the triangle in A117530.
+20
5
1, 2, 3, 3, 5, 3, 7, 3, 5, 6, 6, 6, 13, 3, 11, 8, 12, 8, 13, 10, 8, 7, 12, 10, 9, 21, 6, 22, 11, 7, 13, 12, 21, 13, 14, 16, 18, 7, 20, 17, 21, 20, 24, 14, 18, 20, 16, 16, 35, 10, 18, 29, 18, 30, 30, 26, 21, 18, 21, 29, 16, 22, 32, 40, 10, 27, 24, 25, 45, 18, 39, 40, 43, 11, 11
OFFSET
1,2
COMMENTS
1 <= a(n) <= n; conjecture: a(n) < n for n>13.
FORMULA
a(n) = Sum(A010051(A117530(n,k)): 1 <= k <= n).
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Mar 25 2006
STATUS
approved
Primes of the form n^2 + n + 41.
(Formerly M5273)
+10
120
41, 43, 47, 53, 61, 71, 83, 97, 113, 131, 151, 173, 197, 223, 251, 281, 313, 347, 383, 421, 461, 503, 547, 593, 641, 691, 743, 797, 853, 911, 971, 1033, 1097, 1163, 1231, 1301, 1373, 1447, 1523, 1601, 1847, 1933, 2111, 2203, 2297, 2393, 2591, 2693, 2797
OFFSET
1,1
COMMENTS
Note that 41 is the largest of Euler's Lucky numbers (A014556). - Lekraj Beedassy, Apr 22 2004
a(n) = A117530(13, n) for n <= 13: a(1) = A117530(13, 1) = A014556(6) = 41, A117531(13) = 13. - Reinhard Zumkeller, Mar 26 2006
The link to E. Wegrzynowski contains the following incorrect statement: "It is possible to find a polynomial of the form n^2 + n + B that gives prime numbers for n = 0, ..., A, A being any number." It is known that the maximum is A = 39 for B = 41. - Luis Rodriguez (luiroto(AT)yahoo.com), Jun 22 2008
Contrary to the last comment, Mollin's Theorem 2.1 shows that any A is possible if the Prime k-tuples Conjecture is assumed. - T. D. Noe, Aug 31 2009
a(n) can be generated by a recurrence based on the gcd in the type of Eric Rowland and Aldrich Stevens. See the recurrence in PARI under PROG. - Mike Winkler, Oct 02 2013
These primes are not prime in O_(Q(sqrt(-163)). Given p = n^2 + n + 41, we have ((2n + 1)/2 - sqrt(-163)/2)((2n + 1)/2 + sqrt(-163)/2) = p, e.g., 1601 = 39^2 + 39 + 41 = (79/2 - sqrt(-163)/2)(79/2 + sqrt(-163)/2). - Alonso del Arte, Nov 03 2017
From Peter Bala, Apr 15 2018: (Start)
The polynomial P(n) := n^2 + n + 41 takes distinct prime values for the 40 consecutive integers n = 0 to 39. It follows that the polynomial P(n-40) takes prime values for the 80 consecutive integers n = 0 to 79, consisting of the 40 primes above each taken twice. We note two consequences of this fact.
1) The polynomial P(2*n-40) = 4*n^2 - 158*n + 1601 also takes prime values for the 40 consecutive integers n = 0 to 39.
2) The polynomial P(3*n-40) = 9*n^2 - 237*n + 1601 takes prime values for the 27 consecutive integers n = 0 to 26 ( = floor(79/3)). In addition, calculation shows that P(3*n-40) also takes prime values for n from -13 to -1. Equivalently put, the polynomial P(3*n-79) = 9*n^2 - 471*n + 6203 takes prime values for the 40 consecutive integers n = 0 to 39. This result is due to Higgins. Cf. A007635 and A048059. (End)
REFERENCES
R. K. Guy, Unsolved Problems Number Theory, Section A1.
O. Higgins, Another long string of primes, J. Rec. Math., 14 (1981/2) 185.
Paulo Ribenboim, The Book of Prime Number Records. Springer-Verlag, NY, 2nd ed., 1989, p. 137.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Richard K. Guy, The strong law of small numbers. Amer. Math. Monthly 95 (1988), no. 8, 697-712. [Annotated scanned copy]
R. A. Mollin, Prime-producing quadratics, Amer. Math. Monthly 104 (1997), 529-544.
Jitender Singh, Prime numbers and factorization of polynomials, arXiv:2411.18366 [math.NT], 2024.
Eric Weisstein's World of Mathematics, Euler Prime
Eric Weisstein's World of Mathematics, Prime-Generating Polynomial
FORMULA
a(n) = A056561(n)^2 + A056561(n) + 41.
EXAMPLE
a(39) = 1601 = 39^2 + 39 + 41 is in the sequence because it is prime.
1681 = 40^2 + 40 + 41 is not in the sequence because 1681 = 41*41.
MAPLE
for y from 0 to 10 do
U := y^2+y+41;
if isprime(U) = true then print(U) end if ;
end do:
# Matt C. Anderson, Jan 04 2013
MATHEMATICA
Select[Table[n^2 + n + 41, {n, 0, 59}], PrimeQ] (* Alonso del Arte, Dec 08 2011 *)
PROG
(PARI) for(n=1, 1e3, if(isprime(k=n^2+n+41), print1(k", "))) \\ Charles R Greathouse IV, Jul 25 2011
(Haskell)
a005846 n = a005846_list !! (n-1)
a005846_list = filter ((== 1) . a010051) a202018_list
-- Reinhard Zumkeller, Dec 09 2011
(PARI) {k=2; n=1; for(x=1, 100000, f=x^2+x+41; g=x^2+3*x+43; a=gcd(f, g-k); if(a>1, k=k+2); if(a==x+2-k/2, print(n" "a); n++))} \\ Mike Winkler, Oct 02 2013
(GAP) Filtered(List([0..100], n->n^2+n+41), IsPrime); # Muniru A Asiru, Apr 22 2018
(Magma) [a: n in [0..55] | IsPrime(a) where a is n^2+n+ 41]; // Vincenzo Librandi, Apr 24 2018
CROSSREFS
Intersection of A000040 and A202018; A010051.
Cf. A048059.
KEYWORD
nonn,easy,changed
EXTENSIONS
More terms from Henry Bottomley, Jun 26 2000
STATUS
approved
Primes of form n^2 + n + 17.
(Formerly M5069)
+10
56
17, 19, 23, 29, 37, 47, 59, 73, 89, 107, 127, 149, 173, 199, 227, 257, 359, 397, 479, 523, 569, 617, 719, 773, 829, 887, 947, 1009, 1277, 1423, 1499, 1657, 1823, 1997, 2087, 2179, 2273, 2467, 2879, 3209, 3323, 3557, 3677, 3923, 4049, 4177, 4987, 5273
OFFSET
1,1
COMMENTS
a(n) = A117530(7,n) for n <= 7: a(1) = A117530(7,1) = A014556(5) = 17, A117531(7) = 7. - Reinhard Zumkeller, Mar 26 2006
Note that the gaps between terms increases by 2*k from k = 1 to 15: 19 - 17 = 2, 23 - 19 = 4, 29 - 23 = 6 and so on until 257 - 227 = 30 then fails at 289 - 257 = 32 since 289 = 17^2. - J. M. Bergot, Mar 18 2017
From Peter Bala, Apr 15 2018: (Start)
The polynomial P(n):= n^2 + n + 17 takes distinct prime values for the 16 consecutive integers n = 0 to 15. It follows that the polynomial P(n - 16) takes prime values for the 32 consecutive integers n = 0 to 31, consisting of the 16 primes above each taken twice. We note two consequences of this fact.
1) The polynomial P(2*n - 16) = 4*n^2 - 62*n + 257 also takes prime values for the 16 consecutive integers n = 0 to 15.
2)The polynomial P(3*n - 16) = 9*n^2 - 93*n + 257 takes prime values for the 11 consecutive integers n = 0 to 10 ( = floor(31/3)). In addition, calculation shows that P(3*n-16) also takes prime values for n from -5 to -1. Equivalently put, the polynomial P(3*n-31) = 9*n^2 - 183*n + 947 takes prime values for the 16 consecutive integers n = 0 to 15. Cf. A005846 and A048059. (End)
The primes in this sequence are not primes in the ring of integers of Q(sqrt(-67)). If p = n^2 + n + 17, then ((2n + 1)/2 - sqrt(-67)/2)((2n + 1)/2 + sqrt(-67)/2) = p. For example, 3^2 + 3 + 17 = 29 and (7/2 - sqrt(-67)/2)(7/2 + sqrt(-67)/2) = 29 also. - Alonso del Arte, Nov 27 2019
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, 96.
LINKS
Eric Weisstein's World of Mathematics, Prime-generating Polynomial.
FORMULA
a(n) = A028823(n)^2 + A028823(n) + 17. - Seiichi Manyama, Mar 19 2017
MATHEMATICA
Select[Table[n^2 + n + 17, {n, 0, 99}], PrimeQ] (* Alonso del Arte, Nov 27 2019 *)
PROG
(Magma) [a: n in [0..250]|IsPrime(a) where a is n^2+n+17] // Vincenzo Librandi, Dec 23 2010
(PARI) select(isprime, vector(100, n, n^2+n+17)) \\ Charles R Greathouse IV, Jul 12 2016
(Python)
from sympy import isprime
it = (n**2 + n + 17 for n in range(250))
print([p for p in it if isprime(p)]) # Indranil Ghosh, Mar 18 2017
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved
a(n) = prime(n) + 2.
+10
29
4, 5, 7, 9, 13, 15, 19, 21, 25, 31, 33, 39, 43, 45, 49, 55, 61, 63, 69, 73, 75, 81, 85, 91, 99, 103, 105, 109, 111, 115, 129, 133, 139, 141, 151, 153, 159, 165, 169, 175, 181, 183, 193, 195, 199, 201, 213, 225, 229, 231, 235, 241, 243, 253, 259
OFFSET
1,1
COMMENTS
A048974, A052147, A067187 and A088685 are very similar after dropping terms less than 13. - Eric W. Weisstein, Oct 10 2003
A117530(n,2) = a(n) for n>1. - Reinhard Zumkeller, Mar 26 2006
a(n) = A000040(n) + 2 = A008864(n) + 1 = A113395(n) - 1 = A175221(n) - 2 = A175222(n) - 3 = A139049(n) - 4 = A175223(n) - 5 = A175224(n) - 6 = A140353(n) - 7 = A175225(n) - 8. - Jaroslav Krizek, Mar 06 2010
Left edge of the triangle in A065342. - Reinhard Zumkeller, Jan 30 2012
Union of A006512 and A107986. - David James Sycamore, Jul 08 2018
LINKS
MAPLE
seq(ithprime(n)+2, n=1..55); # Muniru A Asiru, Jul 08 2018
MATHEMATICA
Prime[Range[70]]+2 (* Vladimir Joseph Stephan Orlovsky, Apr 29 2008 *)
PROG
(Magma) [p+2: p in PrimesUpTo(400)]; // Vincenzo Librandi, Nov 27 2013
(Haskell)
a052147 = (+ 2) . a000040 -- Reinhard Zumkeller, Jul 03 2015
(PARI) a(n)=prime(n)+2 \\ Charles R Greathouse IV, Jan 19 2017
(Sage) [nth_prime(n) +2 for n in (1..70)] # G. C. Greubel, May 20 2019
(GAP) Filtered([1..300], k-> IsPrime(k) ) +2 # G. C. Greubel, May 20 2019
CROSSREFS
A139690 is a subsequence.
KEYWORD
nonn,easy
AUTHOR
Simon Colton (simonco(AT)cs.york.ac.uk), Jan 24 2000
STATUS
approved
Euler's "Lucky" numbers: n such that m^2-m+n is prime for m=0..n-1.
+10
26
2, 3, 5, 11, 17, 41
OFFSET
1,1
COMMENTS
Same as n such that 4n-1 is a Heegner number 1,2,3,7,11,19,43,67,163 (see A003173 and Conway and Guy's book).
REFERENCES
J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, p. 225.
J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 41, p. 16, Ellipses, Paris 2008.
I. N. Herstein and I. Kaplansky, Matters Mathematical, Chelsea, NY, 2nd. ed., 1978, see p. 38.
F. Le Lionnais, Les Nombres Remarquables. Paris: Hermann, pp. 88 and 144, 1983.
LINKS
Aram Bingham, Ternary arithmetic, factorization, and the class number one problem, arXiv:2002.02059 [math.NT], 2020. See p. 8.
Hung Viet Chu, Steven J. Miller, and Joshua M. Siktar, Composite Numbers in an Arithmetic Progression, arXiv:2411.03330 [math.HO], 2024. See p. 7.
Brady Haran and Matt Parker, Caboose Numbers, Youtube video, June 2024.
Harold M. Stark, A complete determination of the complex quadratic fields of class-number one, The Michigan Mathematical Journal 14.1 (1967): 1-27.
Eric Weisstein's World of Mathematics, Lucky Number of Euler
Eric Weisstein's World of Mathematics, Prime-Generating Polynomial
FORMULA
a(n) = (A003173(n+3) + 1)/4. - M. F. Hasler, Nov 03 2008
MATHEMATICA
A003173 = Union[Select[-NumberFieldDiscriminant[Sqrt[-#]] & /@ Range[200], NumberFieldClassNumber[Sqrt[-#]] == 1 &] /. {4 -> 1, 8 -> 2}]; a[n_] := (A003173[[n + 4]] + 1)/4; Table[a[n], {n, 0, 5}] (* Jean-François Alcover, Jul 16 2012, after M. F. Hasler *)
Select[Range[50], AllTrue[Table[m^2-m+#, {m, 0, #-1}], PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, May 12 2017 *)
PROG
(PARI) is(n)=n>1 && qfbclassno(1-4*n)==1 \\ Charles R Greathouse IV, Jan 29 2013
(PARI) is(p)=for(n=1, p-1, if(!isprime(n*(n-1)+p), return(0))); 1 \\ naive; Charles R Greathouse IV, Aug 26 2022
(PARI) is(p)=for(n=1, sqrt(p/3)\/1, if(!isprime(n*(n-1)+p), return(0))); 1 \\ Charles R Greathouse IV, Aug 26 2022
CROSSREFS
KEYWORD
nonn,fini,full,nice
STATUS
approved
Least x>0 such that x^2+x+n is not prime.
+10
1
2, 4, 1, 2, 1, 4, 1, 1, 1, 2, 1, 10, 1, 1, 1, 2, 1, 16, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 4, 1, 1, 1, 2, 1, 40, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 6, 1, 1, 1, 2, 1, 1, 1, 1
OFFSET
0,1
COMMENTS
By definition, a(n)>0 for all n, and a(n)>1 if n+2 is prime.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 0..10000
EXAMPLE
a(0)=2 since 1^2+1+0=2 is prime, but 2^2+2+0=6 is composite.
a(1)=4 since 1^2+1+1=2, 2^2+2+1=7 and 3^2+3+1=13 are prime, but 4^2+4+1=21 is composite.
MATHEMATICA
lx[n_]:=Module[{x=1}, While[PrimeQ[x^2+x+n], x++]; x]; Array[lx, 90, 0] (* Harvey P. Dale, Aug 14 2013 *)
PROG
(PARI) a(n)=for( x=1, n+3, isprime(x^2+x+n) | return(x))
CROSSREFS
KEYWORD
nonn
AUTHOR
M. F. Hasler, Mar 03 2012
STATUS
approved

Search completed in 0.013 seconds