[go: up one dir, main page]

login
Search: a115919 -id:a115919
     Sort: relevance | references | number | modified | created      Format: long | short | data
Numbers k such that sigma(k) - tau(k) is a prime.
+10
5
3, 8, 162, 512, 1250, 8192, 31250, 32768, 41472, 663552, 2531250, 3748322, 5120000, 6837602, 7558272, 8000000, 15780962, 33554432, 35701250, 42762752, 45334242, 68024448, 75031250, 78125000, 91125000, 137149922, 243101250, 512000000, 907039232, 959570432
OFFSET
1,1
COMMENTS
From Kevin P. Thompson, Jun 20 2022: (Start)
Terms greater than 3 must be twice a square (see A064205).
No terms are congruent to 4 or 6 (mod 10) (see A064205).
(End)
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..5000 (terms 1..265 from Kevin P. Thompson)
EXAMPLE
162 is a term since sigma(162) - tau(162) = 363 - 10 = 353, which is prime.
MATHEMATICA
Do[ If[ PrimeQ[ DivisorSigma[1, n] - DivisorSigma[0, n]], Print[n]], {n, 1, 10^7}]
PROG
(PARI) { n=0; for (m=1, 10^9, if (isprime(sigma(m) - numdiv(m)), write("b065061.txt", n++, " ", m); if (n==100, return)) ) } \\ Harry J. Smith, Oct 05 2009
(Python)
from itertools import count, islice
from sympy import isprime, divisor_sigma as s, divisor_count as t
def agen(): # generator of terms
yield 3
yield from (k for k in (2*i*i for i in count(1)) if isprime(s(k)-t(k)))
print(list(islice(agen(), 30))) # Michael S. Branicky, Jun 20 2022
KEYWORD
nonn
AUTHOR
Jason Earls, Nov 06 2001
EXTENSIONS
a(17)-a(28) from Harry J. Smith, Oct 05 2009
a(29)-a(30) from Kevin P. Thompson, Jun 20 2022
STATUS
approved
Prime terns in A065387 in the order of their appearance.
+10
4
2, 19, 19, 79, 103, 113, 257, 523, 509, 1151, 1279, 1193, 1579, 2273, 3061, 2389, 2693, 2843, 5003, 4831, 5119, 7411, 5693, 5623, 8623, 6323, 10139, 8933, 18401, 14957, 20411, 20479, 21191, 20123, 29683, 28211, 36833, 55021, 57203, 68743, 48761, 66533, 62423
OFFSET
1,1
LINKS
EXAMPLE
Third term of A038344 is 9 and sigma(9) + phi(9) = 13 + 6 = 19 is prime.
MAPLE
with(numtheory); P:=proc(q) local a, n; for n from 1 to q do a:=sigma(n)+phi(n);
if isprime(a) then print(a); fi; od; end: P(10^6);
MATHEMATICA
Select[Table[DivisorSigma[1, n]+EulerPhi[n], {n, 30000}], PrimeQ] (* Harvey P. Dale, Apr 30 2018 *)
PROG
(PARI) lista(kmax) = {my(f, s); for(k = 1, kmax, f = factor(k); s= sigma(f) + eulerphi(f); if(isprime(s), print1(s, ", "))); } \\ Amiram Eldar, Nov 19 2024
KEYWORD
nonn,changed
AUTHOR
Paolo P. Lava, Sep 18 2013
EXTENSIONS
Name corrected by Amiram Eldar, Nov 19 2024
STATUS
approved
Numbers n such that sigma(n) + tau(n) + phi(n) is a prime, where sigma(n) = A000203(n), tau(n) = A000005(n) and phi(n) = A000010(n).
+10
3
1, 8, 200, 512, 968, 1458, 3200, 4232, 5618, 5832, 6962, 10368, 16928, 26912, 36992, 40328, 53792, 61952, 84050, 101250, 110450, 140450, 147968, 220448, 247808, 249218, 253472, 257762, 279752, 282752, 320000, 336200, 344450, 359552, 361250, 445568, 472392, 512072
OFFSET
1,2
EXAMPLE
sigma(200) = 465, tau(200) = 12, phi(200) = 80 and 465 + 12 + 80 = 557 is prime.
MAPLE
with(numtheory); P:=proc(q) local n; for n from 1 to q do
if isprime(sigma(n)+tau(n)+phi(n)) then print(n); fi; od; end: P(10^6);
KEYWORD
nonn
AUTHOR
Paolo P. Lava, Sep 18 2013
STATUS
approved
Primes of the form sigma(n) + tau(n) + phi(n), where sigma(n) = A000203(n), tau(n) = A000005(n) and phi(n) = A000010(n).
+10
3
3, 23, 557, 1289, 2447, 3779, 9209, 10331, 11351, 18367, 14051, 34351, 42953, 67883, 95717, 96587, 134807, 164249, 193057, 310553, 253159, 321397, 383723, 548213, 657311, 499151, 630023, 516251, 732181, 713927, 927013, 932431, 784627, 906473, 855331, 1121987
OFFSET
1,1
EXAMPLE
The third term of A229265 is 200 and sigma(200) + tau(200) + phi(200) = 465 + 12 + 80 = 557 is prime.
MAPLE
with(numtheory); P:=proc(q) local a, n; for n from 1 to q do a:=sigma(n)+tau(n)+phi(n);
if isprime(a) then print(a); fi; od; end: P(10^6);
MATHEMATICA
Select[Table[DivisorSigma[0, n]+DivisorSigma[1, n]+EulerPhi[n], {n, 10^6}], PrimeQ] (* Harvey P. Dale, Oct 03 2023 *)
KEYWORD
nonn
AUTHOR
Paolo P. Lava, Sep 18 2013
STATUS
approved

Search completed in 0.006 seconds