[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a101819 -id:a101819
     Sort: relevance | references | number | modified | created      Format: long | short | data
Triangle read by rows: T(n,h)/(n-1), where T is the array in A101819.
+20
1
1, 1, 3, 1, 14, 12, 1, 45, 150, 60, 1, 124, 1080, 1560, 360, 1, 315, 6020, 21000, 16800, 2520, 1, 762, 28980, 204120, 378000, 191520, 20160, 1, 1785, 127050, 1631700, 5838840, 6667920, 2328480, 181440, 1, 4088, 522480, 11459280, 71442000
OFFSET
0,3
FORMULA
T(n, h) = C(n-1, h)*U(n, h)/(n-1), where U(n, h) is the array in A019538.
EXAMPLE
First rows:
1
1 3
1 14 12
4 45 150 60
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Dec 17 2004
STATUS
approved
Triangle read by rows: T(n,h) = number of functions f:{1,2,...,n}->{1,2,...,n} such that |Image(f)|=h; h=1,2,...,n, n=1,2,3,... . Essentially A090657, but without zeros.
+10
8
1, 2, 2, 3, 18, 6, 4, 84, 144, 24, 5, 300, 1500, 1200, 120, 6, 930, 10800, 23400, 10800, 720, 7, 2646, 63210, 294000, 352800, 105840, 5040, 8, 7112, 324576, 2857680, 7056000, 5362560, 1128960, 40320, 9, 18360, 1524600, 23496480, 105099120
OFFSET
1,2
COMMENTS
Row sums = n^n. T(n,1) = n, T(n,n) = n!.
REFERENCES
H. Picquet, Note #124, L'Intermédiaire des Mathématiciens, 1 (1894), pp. 125-127. - N. J. A. Sloane, Feb 28 2022
FORMULA
T(n, h) = C(n, h)*U(n, h), where U(n, h) is the array in A019538. Thus T(n, h) = C(n, h)*h!*S(n, h), where S(n, h) is a Stirling number of the second kind (given by A048993 with zeros removed).
T(2n,n) = A288312(n). - Alois P. Heinz, Jun 07 2017
EXAMPLE
First rows:
1;
2, 2;
3, 18, 6;
4, 84, 144, 24;
MATHEMATICA
Table[Table[StirlingS2[n, k] Binomial[n, k] k!, {k, 1, n}], {n, 1, 8}] // Grid
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Dec 17 2004
STATUS
approved
Triangle read by rows: T(n,h) = number of functions f:{1,2,...,n}->{1,2,...,n-2} such that |Image(f)|=h, h=1,2,...,n-2; n=3,4,....
+10
4
2, 3, 42, 4, 180, 600, 5, 620, 5400, 7800, 6, 1890, 36120, 126000, 100800, 7, 5534, 202860, 1428840, 2646000, 1340640, 8, 14280, 1016400, 13053600, 46710720, 53343360, 18627840, 9, 36792, 4702320, 103133520, 642978000, 1380576960
OFFSET
0,1
FORMULA
T(n, h) = C(n-2, h)*U(n, h), where U(n, h) is the array in A019538.
EXAMPLE
First rows:
2
3 42
4 180 600
5 620 5400 7800
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Dec 17 2004
STATUS
approved
Triangle read by rows: (1/n)*T(n,h), where T(n,h) is the array in A101817.
+10
3
1, 1, 1, 1, 6, 2, 1, 21, 36, 6, 1, 60, 300, 240, 24, 1, 155, 1800, 3900, 1800, 120, 1, 378, 9030, 42000, 50400, 15120, 720, 1, 889, 40572, 357210, 882000, 670320, 141120, 5040, 1, 2040, 169400, 2610720, 11677680, 17781120, 9313920, 1451520, 40320
OFFSET
1,5
COMMENTS
Column 2 is A066524.
T(n,h) is the number of partial functions f:{1,2,...,n-1}->{1,2,...,n-1} such that |Image(f)| = h-1. Equivalently T(n,h) = |D_h(a)| where D_h(a) is Green's D-class containing a, with a in the semigroup of partial transformations on [n-1] and rank(a) = h-1. - Geoffrey Critzer, Jan 02 2022
REFERENCES
O. Ganyushkin and V. Mazorchuk, Classical Finite Transformation Semigroups, 2009, page 61.
FORMULA
T(n, h) = (1/n)*C(n, h)*U(n, h), where U(n, h) is the array in A019538.
T(n, h) = Stirling2(n,h)*(n-1)!/(n-h)!. - Geoffrey Critzer, Jan 02 2022
EXAMPLE
First rows:
1
1 1
1 6 2
1 21 36 6
MATHEMATICA
Table[Table[StirlingS2[n, k] (n-1)!/(n - k)!, {k, 1, n}], {n, 1,
6}] // Grid (* Geoffrey Critzer, Jan 02 2022 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Dec 17 2004
EXTENSIONS
Offset changed to 1 by Alois P. Heinz, Jan 03 2022
STATUS
approved

Search completed in 0.006 seconds