Displaying 1-10 of 14 results found.
Indices of primes occurring in A107802.
+20
13
2, 6, 5, 7, 4, 12, 9, 1, 10, 8, 11, 13, 14, 15, 19, 18, 20, 21, 16, 3, 17, 22, 24, 23, 27, 26, 28, 25, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61
CROSSREFS
Cf. A107801 - A107814, A107821, A107823, A107824, A107825, A107826, A107827, A107828, A107829, A107830, A107831, A107832, A107833, A107834.
a(1) = prime(1), for n >= 2, a(n) is the smallest prime not previously used which contains a digit from a(n-1).
+10
29
2, 23, 3, 13, 11, 17, 7, 37, 31, 19, 29, 59, 5, 53, 43, 41, 47, 67, 61, 71, 73, 79, 89, 83, 103, 101, 107, 97, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277
COMMENTS
a(n) = prime(n) for almost all n. Probably a(n) = prime(n) for all n > N for some N, but N must be very large. If it exists, N > 10^1000. - Charles R Greathouse IV, Jul 19 2011
FORMULA
For n>=29, A(107800+i)(n) = A(107800+j)(n), 1 <= i < j <= 14. - Vladimir Shevelev, Mar 18 2012
MATHEMATICA
p=Prime[1]; b={p}; d=p; Do[Do[r=Prime[c]; If[FreeQ[b, r]&&Intersection@@IntegerDigits/@{d, r}=!={}, b=Append[b, r]; d=r; Break[]], {c, 1000}], {k, 60}]; b
PROG
(PARI) common(a, b)=a=vecsort(eval(Vec(Str(a))), , 8); b=vecsort(eval(Vec(Str(b))), , 8); #a+#b>#vecsort(concat(a, b), , 8)
in(v, x)=for(i=1, #v, if(v[i]==x, return(1))); 0
lista(nn) = {my(v=[2]); for(n=2, nn, forprime(p=2, default(primelimit), if(!in(v, p)&&common(v[#v], p), v=concat(v, p); break))); v; }
(Haskell)
import Data.List (intersect, delete)
a107801 n = a107801_list !! (n-1)
a107801_list = 2 : f 2 (tail a000040_list) where
f x ps = g ps where
g (q:qs) | null (show x `intersect` show q) = g qs
| otherwise = q : f q (delete q ps)
CROSSREFS
Other cases of seed: A107802 (a(1) = 3), A107803 (a(1) = 5), A107804 (a(1) = 7), A107805 (a(1) = 11), A107806 (a(1) = 13), A107807 (a(1) = 17), A107808 (a(1) = 19), A107809 (a(1) = 23), A107810 (a(1) = 29), A107811 (a(1) = 31), A107812 (a(1) = 37), A107813 (a(1) = 41), A107814 (a(1) = 43).
a(1) = prime(14), for n >= 2, a(n) is the smallest prime not previously used which contains a digit from a(n-1).
+10
27
43, 3, 13, 11, 17, 7, 37, 23, 2, 29, 19, 31, 41, 47, 67, 61, 71, 73, 53, 5, 59, 79, 89, 83, 103, 101, 107, 97, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277
COMMENTS
a(n) = prime(n) for almost all n. Probably a(n) = prime(n) for all n > N for some N, but N must be very large. - Charles R Greathouse IV, Jul 20 2011
MATHEMATICA
p=Prime[14]; b={p}; d=p; Do[Do[r=Prime[c]; If[FreeQ[b, r]&&Intersection@@IntegerDigits/@{d, r}=!={}, b=Append[b, r]; d=r; Break[]], {c, 1000}], {k, 60}]; b
CROSSREFS
Other cases of seed: A107801 (a(1) = 2), A107802 (a(1) = 3), A107803 (a(1) = 5), A107804 (a(1) = 7), A107805 (a(1) = 11), A107806 (a(1) = 13), A107807 (a(1) = 17), A107808 (a(1) = 19), A107809 (a(1) = 23), A107810 (a(1) = 29), A107811 (a(1) = 31), A107812 (a(1) = 37), A107813 (a(1) = 41).
a(1) = prime(9), for n >= 2, a(n) is the smallest prime not previously used which contains a digit from a(n-1).
+10
16
23, 2, 29, 19, 11, 13, 3, 31, 17, 7, 37, 43, 41, 47, 67, 61, 71, 73, 53, 5, 59, 79, 89, 83, 103, 101, 107, 97, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277
COMMENTS
a(n) = prime(n) for almost all n. Probably a(n) = prime(n) for all n > N for some N, but N must be very large. - Charles R Greathouse IV, Jul 20 2011
MATHEMATICA
p=Prime[9]; b={p}; d=p; Do[Do[r=Prime[c]; If[FreeQ[b, r]&&Intersection@@IntegerDigits/@{d, r}=!={}, b=Append[b, r]; d=r; Break[]], {c, 1000}], {k, 60}]; b
PROG
(PARI) common(a, b)=a=vecsort(eval(Vec(Str(a))), , 8); b=vecsort(eval(Vec(Str(b))), , 8); #a+#b>#vecsort(concat(a, b), , 8)
in(v, x)=for(i=1, #v, if(v[i]==x, return(1))); 0
lista(nn) = {my(v=[23]); for(n=2, nn, forprime(p=2, default(primelimit), if(!in(v, p)&&common(v[#v], p), v=concat(v, p); break))); v; }
CROSSREFS
Other cases of seed: A107801 (a(1) = 2), A107802 (a(1) = 3), A107803 (a(1) = 5), A107804 (a(1) = 7), A107805 (a(1) = 11), A107806 (a(1) = 13), A107807 (a(1) = 17), A107808 (a(1) = 19), A107810 (a(1) = 29), A107811 (a(1) = 31), A107812 (a(1) = 37), A107813 (a(1) = 41), A107814 (a(1) = 43).
a(1) = prime(3), for n >= 2, a(n) is the smallest prime not previously used which contains a digit from a(n-1).
+10
14
5, 53, 3, 13, 11, 17, 7, 37, 23, 2, 29, 19, 31, 41, 43, 47, 67, 61, 71, 73, 79, 59, 89, 83, 103, 101, 107, 97, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277
COMMENTS
a(n) = prime(n) for almost all n. Probably a(n) = prime(n) for all n > N for some N, but N must be very large. - Charles R Greathouse IV, Jul 20 2011
MATHEMATICA
p=Prime[3]; b={p}; d=p; Do[Do[r=Prime[c]; If[FreeQ[b, r]&&Intersection@@IntegerDigits/@{d, r}=!={}, b=Append[b, r]; d=r; Break[]], {c, 1000}], {k, 60}]; b
PROG
(PARI) common(a, b)=a=vecsort(eval(Vec(Str(a))), , 8); b=vecsort(eval(Vec(Str(b))), , 8); #a+#b>#vecsort(concat(a, b), , 8)
in(v, x)=for(i=1, #v, if(v[i]==x, return(1))); 0
lista(nn) = {my(v=[5]); for(n=2, nn, forprime(p=2, default(primelimit), if(!in(v, p)&&common(v[#v], p), v=concat(v, p); break))); v; }
CROSSREFS
Other cases of seed: A107801 (a(1) = 2), A107802 (a(1) = 3), A107804 (a(1) = 7), A107805 (a(1) = 11), A107806 (a(1) = 13), A107807 (a(1) = 17), A107808 (a(1) = 19), A107809 (a(1) = 23), A107810 (a(1) = 29), A107811 (a(1) = 31), A107812 (a(1) = 37), A107813 (a(1) = 41), A107814 (a(1) = 43).
a(1) = prime(4), for n >= 2, a(n) is the smallest prime not previously used which contains a digit from a(n-1).
+10
14
7, 17, 11, 13, 3, 23, 2, 29, 19, 31, 37, 43, 41, 47, 67, 61, 71, 73, 53, 5, 59, 79, 89, 83, 103, 101, 107, 97, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277
COMMENTS
a(n) = prime(n) for almost all n. Probably a(n) = prime(n) for all n > N for some N, but N must be very large. - Charles R Greathouse IV, Jul 20 2011
MATHEMATICA
p=Prime[4]; b={p}; d=p; Do[Do[r=Prime[c]; If[FreeQ[b, r]&&Intersection@@IntegerDigits/@{d, r}=!={}, b=Append[b, r]; d=r; Break[]], {c, 1000}], {k, 60}]; b
PROG
(PARI) common(a, b)=a=vecsort(eval(Vec(Str(a))), , 8); b=vecsort(eval(Vec(Str(b))), , 8); #a+#b>#vecsort(concat(a, b), , 8)
in(v, x)=for(i=1, #v, if(v[i]==x, return(1))); 0
lista(nn) = {my(v=[7]); for(n=2, nn, forprime(p=2, default(primelimit), if(!in(v, p)&&common(v[#v], p), v=concat(v, p); break))); v; }
CROSSREFS
Other cases of seed: A107801 (a(1) = 2), A107802 (a(1) = 3), A107803 (a(1) = 5), A107805 (a(1) = 11), A107806 (a(1) = 13), A107807 (a(1) = 17), A107808 (a(1) = 19), A107809 (a(1) = 23), A107810 (a(1) = 29), A107811 (a(1) = 31), A107812 (a(1) = 37), A107813 (a(1) = 41), A107814 (a(1) = 43).
a(1) = prime(5), for n >= 2, a(n) is the smallest prime not previously used which contains a digit from a(n-1).
+10
14
11, 13, 3, 23, 2, 29, 19, 17, 7, 37, 31, 41, 43, 47, 67, 61, 71, 73, 53, 5, 59, 79, 89, 83, 103, 101, 107, 97, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277
COMMENTS
a(n) = prime(n) for almost all n. Probably a(n) = prime(n) for all n > N for some N, but N must be very large. - Charles R Greathouse IV, Jul 20 2011
MATHEMATICA
p=Prime[5]; b={p}; d=p; Do[Do[r=Prime[c]; If[FreeQ[b, r]&&Intersection@@IntegerDigits/@{d, r}=!={}, b=Append[b, r]; d=r; Break[]], {c, 1000}], {k, 60}]; b
PROG
(PARI) common(a, b)=a=vecsort(eval(Vec(Str(a))), , 8); b=vecsort(eval(Vec(Str(b))), , 8); #a+#b>#vecsort(concat(a, b), , 8)
in(v, x)=for(i=1, #v, if(v[i]==x, return(1))); 0
lista(nn) = {my(v=[11]); for(n=2, nn, forprime(p=2, default(primelimit), if(!in(v, p)&&common(v[#v], p), v=concat(v, p); break))); v; }
CROSSREFS
Other cases of seed: A107801 (a(1) = 2), A107802 (a(1) = 3), A107803 (a(1) = 5), A107804 (a(1) = 7), A107806 (a(1) = 13), A107807 (a(1) = 17), A107808 (a(1) = 19), A107809 (a(1) = 23), A107810 (a(1) = 29), A107811 (a(1) = 31), A107812 (a(1) = 37), A107813 (a(1) = 41), A107814 (a(1) = 43).
a(1) = prime(6), for n >= 2, a(n) is the smallest prime not previously used which contains a digit from a(n-1).
+10
14
13, 3, 23, 2, 29, 19, 11, 17, 7, 37, 31, 41, 43, 47, 67, 61, 71, 73, 53, 5, 59, 79, 89, 83, 103, 101, 107, 97, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277
COMMENTS
a(n) = prime(n) for almost all n. Probably a(n) = prime(n) for all n > N for some N, but N must be very large. - Charles R Greathouse IV, Jul 20 2011
MATHEMATICA
p=Prime[6]; b={p}; d=p; Do[Do[r=Prime[c]; If[FreeQ[b, r]&&Intersection@@IntegerDigits/@{d, r}=!={}, b=Append[b, r]; d=r; Break[]], {c, 1000}], {k, 60}]; b
PROG
(PARI) common(a, b)=a=vecsort(eval(Vec(Str(a))), , 8); b=vecsort(eval(Vec(Str(b))), , 8); #a+#b>#vecsort(concat(a, b), , 8)
in(v, x)=for(i=1, #v, if(v[i]==x, return(1))); 0
lista(nn) = {my(v=[13]); for(n=2, nn, forprime(p=2, default(primelimit), if(!in(v, p)&&common(v[#v], p), v=concat(v, p); break))); v; }
CROSSREFS
Other cases of seed: A107801 (a(1) = 2), A107802 (a(1) = 3), A107803 (a(1) = 5), A107804 (a(1) = 7), A107805 (a(1) = 11), A107807 (a(1) = 17), A107808 (a(1) = 19), A107809 (a(1) = 23), A107810 (a(1) = 29), A107811 (a(1) = 31), A107812 (a(1) = 37), A107813 (a(1) = 41), A107814 (a(1) = 43).
a(1) = prime(7), for n >= 2, a(n) is the smallest prime not previously used which contains a digit from a(n-1).
+10
14
17, 7, 37, 3, 13, 11, 19, 29, 2, 23, 31, 41, 43, 47, 67, 61, 71, 73, 53, 5, 59, 79, 89, 83, 103, 101, 107, 97, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277
COMMENTS
a(n) = prime(n) for almost all n. Probably a(n) = prime(n) for all n > N for some N, but N must be very large. - Charles R Greathouse IV, Jul 20 2011
MATHEMATICA
p=Prime[7]; b={p}; d=p; Do[Do[r=Prime[c]; If[FreeQ[b, r]&&Intersection@@IntegerDigits/@{d, r}=!={}, b=Append[b, r]; d=r; Break[]], {c, 1000}], {k, 60}]; b
PROG
(PARI) common(a, b)=a=vecsort(eval(Vec(Str(a))), , 8); b=vecsort(eval(Vec(Str(b))), , 8); #a+#b>#vecsort(concat(a, b), , 8)
in(v, x)=for(i=1, #v, if(v[i]==x, return(1))); 0
lista(nn) = {my(v=[17]); for(n=2, nn, forprime(p=2, default(primelimit), if(!in(v, p)&&common(v[#v], p), v=concat(v, p); break))); v; }
CROSSREFS
Other cases of seed: A107801 (a(1) = 2), A107802 (a(1) = 3), A107803 (a(1) = 5), A107804 (a(1) = 7), A107805 (a(1) = 11), A107806 (a(1) = 13), A107808 (a(1) = 19), A107809 (a(1) = 23), A107810 (a(1) = 29), A107811 (a(1) = 31), A107812 (a(1) = 37), A107813 (a(1) = 41), A107814 (a(1) = 43).
a(1) = prime(8), for n >= 2, a(n) is the smallest prime not previously used which contains a digit from a(n-1).
+10
14
19, 11, 13, 3, 23, 2, 29, 59, 5, 53, 31, 17, 7, 37, 43, 41, 47, 67, 61, 71, 73, 79, 89, 83, 103, 101, 107, 97, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277
COMMENTS
a(n) = prime(n) for almost all n. Probably a(n) = prime(n) for all n > N for some N, but N must be very large. - Charles R Greathouse IV, Jul 20 2011
MATHEMATICA
p=Prime[8]; b={p}; d=p; Do[Do[r=Prime[c]; If[FreeQ[b, r]&&Intersection@@IntegerDigits/@{d, r}=!={}, b=Append[b, r]; d=r; Break[]], {c, 1000}], {k, 60}]; b
PROG
(PARI) common(a, b)=a=vecsort(eval(Vec(Str(a))), , 8); b=vecsort(eval(Vec(Str(b))), , 8); #a+#b>#vecsort(concat(a, b), , 8)
in(v, x)=for(i=1, #v, if(v[i]==x, return(1))); 0
lista(nn) = {my(v=[19]); for(n=2, nn, forprime(p=2, default(primelimit), if(!in(v, p)&&common(v[#v], p), v=concat(v, p); break))); v; }
CROSSREFS
Other cases of seed: A107801 (a(1) = 2), A107802 (a(1) = 3), A107803 (a(1) = 5), A107804 (a(1) = 7), A107805 (a(1) = 11), A107806 (a(1) = 13), A107807 (a(1) = 17), A107809 (a(1) = 23), A107810 (a(1) = 29), A107811 (a(1) = 31), A107812 (a(1) = 37), A107813 (a(1) = 41), A107814 (a(1) = 43).
Search completed in 0.015 seconds
|