[go: up one dir, main page]

login
Search: a091744 -id:a091744
     Sort: relevance | references | number | modified | created      Format: long | short | data
Triangle of coefficients of certain polynomials used for G.f.s of columns of triangle A060058.
+10
10
1, 1, 1, 5, 26, 9, 61, 775, 1179, 225, 1385, 32516, 114318, 87156, 11025, 50521, 1894429, 11982834, 20371266, 9652725, 893025, 2702765, 148008446, 1472351967, 4417978068, 4546174779, 1502513550
OFFSET
0,4
COMMENTS
The row polynomials p(n,x) (rising powers of x) appear as numerators of the column g.f.s of triangle A060058.
First column (m=0) gives A000364 (Euler numbers). See A091742, A091743, A091744 for columns m=1..3.
The main diagonal gives A001818. The row sums give A052502. The alternating row sums give A091745.
FORMULA
The row polynomials p(n, x) := Sum_{m=0..n} a(n, m)*x^m satisfy the differential equation: p(n, x) = x*((1-x)^2)*(d^2/dx^2)p(n-1, x) + (1+6*(n-1)*x+(5-6*n)*x^2)*(d/dx)p(n-1, x) + (3*n-2)*(1+(3*n-2)*x)*p(n-1, x), n >= 1, with input p(0, x)=1. - Wolfdieter Lang, Feb 13 2004
EXAMPLE
Triangle begins:
{1};
{1,1};
{5,26,9}; <-- p(2,n)=5+26*x+9*x^2.
{61,775,1179,225};
...
KEYWORD
nonn,easy,tabl
AUTHOR
Wolfdieter Lang, Mar 16 2001
STATUS
approved

Search completed in 0.004 seconds