Displaying 1-10 of 18 results found.
a(n) = binomial(4n,2n) or (4*n)!/((2*n)!*(2*n)!).
+10
43
1, 6, 70, 924, 12870, 184756, 2704156, 40116600, 601080390, 9075135300, 137846528820, 2104098963720, 32247603683100, 495918532948104, 7648690600760440, 118264581564861424, 1832624140942590534, 28453041475240576740, 442512540276836779204, 6892620648693261354600
COMMENTS
Corollary 8 in Chapman et alia says: "For n>=1, there are binomial(4n,2n) binary sequences of length 4n+1 with the property that for all j, the j-th occurrence of 10 appears in positions 4j+1 and 4j+2 or later (if it exists at all)." - Peter Luschny, Nov 21 2011
Sequence terms are given by [x^n] ( (1 + x)^(k+2)/(1 - x)^k )^n for k = 2. See the cross references for related sequences obtained from other values of k. - Peter Bala, Sep 29 2015
FORMULA
Using Stirling's formula in sequence A000142 it is easy to get the asymptotic expression a(n) ~ 16^n / sqrt(2 * Pi * n). - Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 07 2001
a(n) = 2* A001700(2*n-1) = (2*n+1)*C(2*n), n >= 1, C(n) := A000108(n) (Catalan).
G.f.: (1-y*((1+4*y)*c(y)-(1-4*y)*c(-y)))/(1-(4*y)^2) with y^2=x, c(y) = g.f. for A000108 (Catalan). (End)
a(n) ~ 2^(-1/2)*Pi^(-1/2)*n^(-1/2)*2^(4*n)*{1 - (1/16)*n^-1 + ...}. - Joe Keane (jgk(AT)jgk.org), Jun 11 2002
a(n) = (1/Pi)*Integral_{x=-2..2} (2+x)^(2*n)/sqrt((2-x)*(2+x)) dx. Peter Luschny, Sep 12 2011
G.f.: (1/2) * (1/sqrt(1+4*sqrt(x)) + 1/sqrt(1-4*sqrt(x))). - Mark van Hoeij, Oct 25 2011
Sum_{n>=1} 1/a(n) = 16/15 + Pi*sqrt(3)/27 - 2*sqrt(5)*log(phi)/25, [T. Trif, Fib Quart 38 (2000) 79] with phi= A001622. - R. J. Mathar, Jul 18 2012
D-finite with recurrence n*(2*n-1)*a(n) -2*(4*n-1)*(4*n-3)*a(n-1)=0. - R. J. Mathar, Dec 02 2012
G.f.: sqrt((1 + sqrt(1-16*x))/(2*(1-16*x))) = 1 + 6*x/(G(0)-6*x), where G(k) = 2*x*(4*k+3)*(4*k+1) + (2*k+1)*(k+1) - 2*x*(k+1)*(2*k+1)*(4*k+5)*(4*k+7)/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Jun 30 2013
a(n) = hypergeom([1-2*n,-2*n],[2],1)*(2*n+1). - Peter Luschny, Sep 22 2014
0 = a(n)*(+65536*a(n+2) - 16896*a(n+3) + 858*a(n+4)) + a(n+1)*(-3584*a(n+2) + 1176*a(n+3) - 66*a(n+4)) + a(n+2)*(+14*a(n+2) - 14*a(n+3) + a(n+4)) for all n in Z.
0 = a(n)^2*(+196608*a(n+1)^2 - 40960*a(n+1)*a(n+2) + 2100*a(n+2)^2) + a(n)*a(n+1)*(-12288*a(n+1)^2 + 2840*a(n+1)*a(n+2) - 160*a(n+2)^2) + a(n+1)^2*(+180*a(n+1)^2 - 48*a(n+1)*a(n+2) + 3*a(n+2)^2) for all n in Z. (End)
a(n) = [x^n] ( (1 + x)^4/(1 - x)^2 )^n; exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + 6*x + 53*x^2 + 554*x^3 + ... = Sum_{n >= 0} A066357(n+1)*x^n. - Peter Bala, Jun 23 2015
a(n) = Sum_{i = 0..n} binomial(4*n,i)*binomial(3*n-i-1,n-i). - Peter Bala, Sep 29 2015
a(n) is the n-th moment of the positive weight function w(x) on (0,16), i.e. in Maple notation, a(n) = int(x^n*w(x), x = 0..16), n = 0,1,..., where w(x) = (1/(2*Pi))/((sqrt(4 - sqrt(x))*x^(3/4)). The function w(x) is the solution of the Hausdorff moment problem and is unique. - Karol A. Penson, Mar 06 2018
a(n) = (16^n*(Beta(2*n - 1/2, 1/2) - Beta(2*n - 1/2, 3/2)))/Pi. - Peter Luschny, Mar 06 2018
a(m*p^k) == a(m*p^(k-1)) ( mod p^(3*k) ) for prime p >= 5 and positive integers m and k.
a(n) = [(x*y)^(2*n)] (1 + x + y)^(4*n). (End)
a(n) = (2^n/n!)*Product_{k = n..2*n-1} (2*k + 1). - Peter Bala, Feb 26 2023
a(n) = Sum_{k = 0..2*n} binomial(2*n+k-1, k). - Peter Bala, Nov 02 2024
Sum_{n>=0} (-1)^n/a(n) = 16/17 + 4*sqrt(34)*(sqrt(17)-2)*arctan(sqrt(2/(sqrt(17)-1)))/(289*sqrt(sqrt(17)-1)) + 2*sqrt(34)*(sqrt(17)+2)*log((sqrt(sqrt(17)+1)-sqrt(2))/(sqrt(sqrt(17)+1)+sqrt(2)))/(289*sqrt(sqrt(17)+1)) (Sprugnoli, 2006, Theorem 3.8, p. 11; Piezas, 2012). - Amiram Eldar, Nov 03 2024
EXAMPLE
a(n) = (1/Pi)*Integral_{x=0..4} x^(2n)/sqrt(4-(x-2)^2) dx. - Paul Barry, Sep 17 2010
G.f. = 1 + 6*x + 70*x^2 + 924*x^3 + 12870*x^4 + 184756*x^5 + 2704156*x^6 + ...
MAPLE
A001448 := n-> binomial(4*n, 2*n) ;
MATHEMATICA
a[ n_] := If[ n < 0, 0, HypergeometricPFQ[ {-2 n, -2 n}, {1}, 1]]; (* Michael Somos, Oct 22 2014 *)
PROG
(Magma) [Factorial(4*n)/(Factorial(2*n)*Factorial(2*n)): n in [0..20]]; // Vincenzo Librandi, Sep 13 2011
(Python)
from math import comb
a(n) = (7*n)!*(3/2*n)!/((7*n/2)!*(3*n)!*(2*n)!).
+10
21
1, 48, 6006, 860160, 130378950, 20392706048, 3254013513660, 526470648692736, 86047769258554950, 14173603389190963200, 2349023203055914140756, 391249767795614684282880, 65434374898388743460014620, 10981406991821583404677201920
COMMENTS
Let a > b be nonnegative integers. The ratio of factorials (2*a*n)!*(b*n)!/( (a*n)!*(2*b*n)!*((a - b)*n)! ) is known to be an integer for n >= 0 (see, for example, Bober, Theorem 1.1). We have the companion result: Let a > b be nonnegative integers. Then the ratio of factorials ((2*a + 1)*n)!*((b + 1/2)*n)!/(((a + 1/2)*n)!*((2*b + 1)*n)!*((a - b)*n)!) is an integer for n >= 0. This is the case a = 3, b = 1. Other cases include A091496 (a = 2, b = 0), A091527 (a = 1, b = 0), A262732 (a = 2, b = 1), A262733 (a = 3, b = 2) and A276099 (a = 4, b = 2).
REFERENCES
R. P. Stanley, Enumerative Combinatorics Volume 2, Cambridge Univ. Press, 1999, Theorem 6.33, p. 197.
LINKS
J. W. Bober, Factorial ratios, hypergeometric series, and a family of step functions, 2007, arXiv:0709.1977v1 [math.NT], J. London Math. Soc., 79, Issue 2, (2009), 422-444.
FORMULA
a(n) = Sum_{k = 0..2*n} binomial(7*n, 2*n - k)*binomial(3*n + k - 1, k).
a(n) = Sum_{k = 0..n} binomial(10*n, 2*n - 2*k)*binomial(3*n + k - 1, k).
Recurrence: a(n) = 28*(7*n - 1)*(7*n - 3)*(7*n - 5)*(7*n - 9)*(7*n - 11)*(7*n - 13)/(3*n*(n - 1)*(2*n - 1)*(2*n - 3)*(3*n - 1)*(3*n - 5)) * a(n-2).
a(n) ~ 1/sqrt(4*Pi*n) * (7^7/3^3)^(n/2).
O.g.f. A(x) = Hypergeom([13/14, 11/14, 9/14, 5/14, 3/14, 1/14], [5/6, 3/4, 1/2, 1/4, 1/6], (7^7/3^3)*x^2) + 48*x*Hypergeom([10/7, 9/7, 8/7, 6/7, 5/7, 4/7], [5/4, 4/3, 3/2, 3/4, 2/3], (7^7/3^3)*x^2).
a(n) = [x^(2*n)] H(x)^n, where H(x) = (1 + x)^7/(1 - x)^3.
It follows that the o.g.f. A(x) equals the diagonal of the bivariate rational generating function 1/2*( 1/(1 - t*H(sqrt(x))) + 1/(1 - t*H(-sqrt(x))) ) and hence is algebraic by Stanley 1999, Theorem 6.33, p. 197.
Let F(x) = 1/x*Series_Reversion( x*sqrt((1 - x)^3/(1 + x)^7) ) and put G(x) = 1 + x*d/dx(Log(F(x)). Then A(x^2) = (G(x) + G(-x))/2.
MAPLE
seq(simplify((7*n)!*(3/2*n)!/((7*n/2)!*(3*n)!*(2*n)!)), n = 0..20);
PROG
(Python)
from math import factorial
from sympy import factorial2
def A276098(n): return int((factorial(7*n)*factorial2(3*n)<<(n<<1))//factorial2(7*n)//factorial(3*n)//factorial (n<<1)) # Chai Wah Wu, Aug 10 2023
a(n) = (6*n)!*(2*n)!/((4*n)!*(3*n)!*n!).
+10
18
1, 10, 198, 4420, 104006, 2521260, 62300700, 1560167752, 39457579590, 1005490725148, 25776935824948, 664048851069240, 17175945353271068, 445775181599116600, 11602978540817349240, 302767701121286251920, 7917664916276259668550, 207452338901630123085180
COMMENTS
This sequence is the particular case a = 3, b = 2 of the following result (see Bober, Theorem 1.2): Let a, b be nonnegative integers with a > b and gcd(a,b) = 1. Then (2*a*n)!*(b*n)!/((a*n)!*(2*b*n)!*((a-b)*n)!) is an integer for all integer n >= 0. Other cases include A061162 (a = 3, b = 1), A211420 (a = 4, b = 1), A211421 (a = 4, b = 3) and A061163 (a = 5, b = 1).
This is the case m = 3n in Catalan's formula (2m)!*(2n)!/(m!*(m+n)!*n!) - see Umberto Scarpis in References. - Bruno Berselli, Apr 27 2012
Sequence terms are given by the coefficient of x^n in the expansion of ((1 + x)^(k+2)/(1 - x)^k)^n when k = 4. See the cross references for related sequences obtained from other values of k. - Peter Bala, Sep 29 2015
REFERENCES
Umberto Scarpis, Sui numeri primi e sui problemi dell'analisi indeterminata in Questioni riguardanti le matematiche elementari, Nicola Zanichelli Editore (1924-1927, third Edition), page 11.
FORMULA
The o.g.f. Sum_{n >= 1} a(n)*z^n is algebraic over the field of rational functions Q(z) (see Rodriguez-Villegas).
a(n) = Sum_{i = 0..n} binomial(6*n, i)*binomial(5*n-i-1, n-i).
a(n) = [x^n] ( (1 + x)^6/(1 - x)^4 )^n.
O.g.f. exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + 10*x + 149*x^2 + 2630*x^3 + 51002*x^4 + ... has integer coefficients and equals 1/x * series reversion of x*(1 - x)^4/ (1 + x)^6. See A262738. (End)
O.g.f.: sqrt((4 + 7290*x^2 - 59049*x^3 + 2*(8 + 3*sqrt(3)*sqrt(x*(-1 + 27*x)^7*(4 + 27*x)^2) - 27*x*(-2 + 27*x)*(-17 + 27*x*(19 + 27*x*(-11 + 27*x))))^(1/3) + (8 + 3*sqrt(3)*sqrt(x*(-1 + 27*x)^7*(4 + 27*x)^2) - 27*x*(-2 + 27*x)*(-17 + 27*x*(19 + 27*x*(-11 + 27*x))))^(2/3) - 27*x*(11 + 2*(8 + 3*sqrt(3)*sqrt(x*(-1 + 27*x)^7*(4 + 27*x)^2) - 27*x*(-2 + 27*x)*(-17 + 27*x*(19 + 27*x*(-11 + 27*x))))^(1/3)))/(6*(1 - 27*x)^2*(8 + 3*sqrt(3)*sqrt(x*(-1 + 27*x)^7*(4 + 27*x)^2) - 27*x*(-2 + 27*x)*(-17 + 27*x*(19 + 27*x*(-11 + 27*x))))^(1/3))). - Karol A. Penson and Jean-Marie Maillard, May 02 2018
Right-hand side of the binomial sum identity: Sum_{k = 0..2*n} (-1)^(n+k) * binomial(6*n, 2*n+k) * binomial(2*n, k) = (6*n)!*(2*n)!/((4*n)!*(3*n)!*n!). - Peter Bala, Jan 19 2020
a(n) = 6*(6*n - 1)*(2*n - 1)*(6*n - 5)*a(n-1)/(n*(4*n - 1)*(4*n - 3)). - Neven Sajko, Jul 19 2023
a(n) = 4^n*(Gamma(3*n + 1/2)/Gamma(2*n + 1/2))/Gamma(n + 1).
O.g.f.: hypergeom([1/6, 1/2, 5/6], [1/4, 3/4], 27*z). (End)
MAPLE
A211419 := n-> (6*n)!*(2*n)!/((4*n)!*(3*n)!*n!):
u := 27*x-1: c := (u^3*((3*x*u)^(1/2)*(12+81*x)-u^2+216*x-7))^(1/3):
gf := ((c^2-2*c*u+27*u*(7-81*x)*x-4*u)/(6*c*u^2))^(1/2):
ogf := hypergeom([1/6, 1/2, 5/6], [1/4, 3/4], 27*z): ser := series(ogf, z, 20):
MATHEMATICA
CoefficientList[Series[Sqrt[(4 + 7290 x^2 - 59049 x^3 + 2 (8 + 3 Sqrt[3] Sqrt[x (-1 + 27 x)^7 (4 + 27 x)^2] - 27 x (-2 + 27 x) (-17 + 27 x (19 + 27 x (-11 + 27 x))))^(1/3) + (8 + 3 Sqrt[3] Sqrt[x (-1 + 27 x)^7 (4 + 27 x)^2] - 27 x (-2 + 27 x) (-17 + 27 x (19 + 27 x (-11 + 27 x))))^(2/3) - 27 x (11 + 2 (8 + 3 Sqrt[3] Sqrt[x (-1 + 27 x)^7 (4 + 27 x)^2] - 27 x (-2 + 27 x) (-17 + 27 x (19 + 27 x (-11 + 27 x))))^(1/3)))/(6 (1 - 27 x)^2 (8 + 3 Sqrt[3] Sqrt[x (-1 + 27 x)^7 (4 + 27 x)^2] - 27 x (-2 + 27 x) (-17 + 27 x (19 + 27 x (-11 + 27 x))))^(1/3))], {x, 0, 16}], x] (* Karol A. Penson and Jean-Marie Maillard, May 02 2018 *)
PROG
(PARI) a(n) = (6*n)!*(2*n)!/((4*n)!*(3*n)!*n!);
(Magma) [Factorial(6*n) * Factorial(2*n) / (Factorial(4*n) * Factorial(3*n) * Factorial(n)): n in [0..20]]; // Vincenzo Librandi, May 03 2018
a(n) = (1/n!) * (5*n)!/(5*n/2)! * (3*n/2)!/(3*n)!.
+10
15
1, 8, 126, 2240, 41990, 811008, 15967980, 318636032, 6421422150, 130395668480, 2663825039876, 54684895150080, 1127155102890908, 23311847679590400, 483537022180231320, 10054732930602762240, 209536624110664757830, 4375058594685417160704, 91505601042318156186900
COMMENTS
Sequence terms are given by the coefficient of x^n in the expansion of ( (1 + x)^(k+2)/(1 - x)^k )^n when k = 3. See the cross references for related sequences obtained from other values of k.
Let a > b be nonnegative integers. Then the ratio of factorials ((2*a + 1)*n)!*((b + 1/2)*n)!/(((a + 1/2)*n)!*((2*b + 1)*n)!*((a - b)*n)!) is an integer for n >= 0. This is the case a = 2, b = 1. - Peter Bala, Aug 28 2016
REFERENCES
R. P. Stanley, Enumerative Combinatorics Volume 2, Cambridge Univ. Press, 1999, Theorem 6.33, p. 197.
FORMULA
a(n) = Sum_{i = 0..n} binomial(5*n,i)*binomial(4*n-i-1,n-i).
a(n) = [x^n] ( (1 + x)^5/(1 - x)^3 )^n.
D-finite with recurrence a(n) = 20*(5*n - 1)*(5*n - 3)*(5*n - 7)*(5*n - 9)/( n*(3*n - 1)*(3*n - 3)*(3*n - 5) ) * a(n-2).
The o.g.f. exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + 8*x + 95*x^2 + 1336*x^4 + ... has integer coefficients and equals (1/x) * (series reversion of x*(1 - x)^3/(1 + x)^5). See A262737.
a(n) ~ 2^n*3^(-3*n/2)*5^(5*n/2)/sqrt(2*Pi*n). - Ilya Gutkovskiy, Jul 31 2016
a(n) = Sum_{k = 0..floor(n/2)} binomial(8*n,n - 2*k) * binomial(3*n + k - 1,k).
O.g.f.: A(x) = Hypergeom([9/10, 7/10, 3/10, 1/10], [5/6, 1/2, 1/6], (12500/27)*x^2) + 8*x*Hypergeom([7/5, 6/5, 4/5, 3/5], [4/3, 3/2, 2/3], (12500/27)*x^2).
The o.g.f. is the diagonal of the bivariate rational function 1/(1 - t*(1 + x)^5/(1 - x)^3) and hence is algebraic by Stanley 1999, Theorem 6.33, p. 197. (End)
Integral representation of a(n) as the n-th moment of a positive function w(x) on the support (0, sqrt(12500/27)):
a(n) = Integral_{x=0..sqrt(12500/27)} x^n*w(x) dx,
where w(x) = sqrt(5)*2^(3/5)*csc((1/5)*Pi)*sin((1/10)*Pi)*hypergeom([1/10, 4/15, 3/5, 14/15], [1/5, 2/5, 4/5], 27*x^2*(1/12500))/(10*Pi*x^(4/5)) + sqrt(5)*2^(4/5)*csc(2*Pi*(1/5))*sin(3*Pi*(1/10))*hypergeom([3/10, 7/15, 4/5, 17/15], [2/5, 3/5, 6/5], 27*x^2*(1/12500))/(50*Pi*x^(2/5)) + sqrt(5)*2^(1/5)*csc(2*Pi*(1/5))*sin(3*Pi*(1/10))*x^(2/5)*hypergeom([7/10, 13/15, 6/5, 23/15], [4/5, 7/5, 8/5], 27*x^2*(1/12500))/(625*Pi) + 11*sqrt(5)*2^(2/5)*csc((1/5)*Pi)*sin((1/10)*Pi)*x^(4/5)*hypergeom([9/10, 16/15, 7/5, 26/15], [6/5, 8/5, 9/5], 27*x^2*(1/12500))/(50000*Pi). The function w(x) involves four different hypergeometric functions of type 4F3. The function w(x) is singular at both ends of the support. It is the solution of the Hausdorff moment problem and as such it is unique. (End)
a(n) = [x^n] (1 + 4*x)^((5*n-1)/2) = 4^n*binomial((5*n-1)/2,n).
a(p) == a(1) (mod p^3) for prime p >= 5.
More generally, we conjecture that a(n*p^k) == a(n*p^(k-1)) (mod p^(3*k)) for prime p >= 5 and positive integers n and k. (End)
MAPLE
a := n -> 1/n! * (5*n)!/GAMMA(1 + 5*n/2) * GAMMA(1 + 3*n/2)/(3*n)!:
seq(a(n), n = 0..18);
MATHEMATICA
Table[1/n!*(5 n)!/(5 n/2)!*(3 n/2)!/(3 n)!, {n, 0, 18}] (* or *)
Table[Sum[Binomial[8 n, n - 2 k] Binomial[3 n + k - 1, k], {k, 0, Floor[n/2]}], {n, 0, 18}] (* Michael De Vlieger, Aug 28 2016 *)
PROG
(PARI) a(n) = sum(k=0, n, binomial(5*n, k)*binomial(4*n-k-1, n-k));
(Python)
from math import factorial
from sympy import factorial2
def A262732(n): return int((factorial(5*n)*factorial2(3*n)<<n)//(factorial2(5*n)*factorial(3*n)*factorial (n))) # Chai Wah Wu, Aug 10 2023
Integral factorial ratio sequence: a(n) = (8*n)!*(3*n)!/((6*n)!*(4*n)!*n!).
+10
14
1, 14, 390, 12236, 404550, 13777764, 478273692, 16825310040, 597752648262, 21397472070260, 770557136489140, 27884297395587240, 1013127645555452700, 36935287875280348776, 1350441573221798941560, 49498889739033621986736, 1818284097150186829038150
COMMENTS
This sequence is the particular case a = 4, b = 3 of the following result (see Bober, Theorem 1.2): let a, b be nonnegative integers with a > b and GCD(a,b) = 1. Then (2*a*n)!*(b*n)!/((a*n)!*(2*b*n)!*((a-b)*n)!) is an integer for all integer n >= 0. Other cases include A061162 (a = 3, b = 1), A211419 (a = 3, b = 2) and A211420 (a = 4, b = 1).
Sequence terms are given by the coefficient of x^n in the expansion of ( (1 + x)^(k+2)/(1 - x)^k )^n when k = 6. See the cross references for related sequences obtained from other values of k. - Peter Bala, Sep 29 2015
FORMULA
The o.g.f. sum {n >= 1} a(n)*z^n is algebraic over the field of rational functions Q(z) (see Rodriguez-Villegas).
a(n) = Sum_{i = 0..n} binomial(8*n,i)*binomial(7*n-i-1,n-i).
a(n) = [x^n] ( (1 + x)^8/(1 - x)^6 )^n.
a(0) = 1 and a(n) = 2*(8*n - 1)*(8*n - 3)*(8*n - 5)*(8*n - 7)/( n*(6*n - 1)*(6*n - 3)*(6*n - 5) ) * a(n-1) for n >= 1.
exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + 14*x + 293*x^2 + 7266*x^3 + 197962*x^4 + 5726364*x^5 + ... has integer coefficients and equals 1/x * series reversion of x*(1 - x)^6/(1 + x)^8. See A262740. (End)
a(n) = (2^n/n!)*Product_{k = 3*n..4*n-1} (2*k + 1). - Peter Bala, Feb 26 2023
MAPLE
a := n -> (8*n)!*(3*n)!/((6*n)!*(4*n)!*n!);
seq(a(n), n = 0..16);
PROG
(PARI) a(n) = (8*n)!*(3*n)!/((6*n)!*(4*n)!*n!);
(Magma) [Factorial(8*n)*Factorial(3*n)/(Factorial(6*n)*Factorial(4*n)*Factorial(n)): n in [0..20]]; // Vincenzo Librandi, Aug 01 2016
a(n) = (1/n!) * (7*n)!/(7*n/2)! * (5*n/2)!/(5*n)!.
+10
13
1, 12, 286, 7680, 217350, 6336512, 188296108, 5670567936, 172459427910, 5284842700800, 162922160580036, 5047099485847552, 156983503897469340, 4899363753956474880, 153349672416272587800, 4811846645261721927680, 151316978279502571401798, 4767566079229070105640960
COMMENTS
Sequence terms are given by the coefficient of x^n in the expansion of ( (1 + x)^(k+2)/(1 - x)^k )^n when k = 5. See the cross references for related sequences obtained from other values of k.
let a > b be nonnegative integers. Then the ratio of factorials ((2*a + 1)*n)!*((b + 1/2)*n)!/(((a + 1/2)*n)!*((2*b + 1)*n)!*((a - b)*n)!) is an integer for n >= 0. This is the case a = 3, b = 2. - Peter Bala, Aug 28 2016
REFERENCES
R. P. Stanley, Enumerative Combinatorics Volume 2, Cambridge Univ. Press, 1999, Theorem 6.33, p. 197.
FORMULA
a(n) = [x^n] ( (1 + x)^7/(1 - x)^5 )^n.
a(n) = Sum_{i = 0..n} binomial(7*n,i)*binomial(6*n-i-1,n-i).
a(n) = 28*(7*n - 1)*(7*n - 3)*(7*n - 9)*(7*n - 11)*(7*n - 13) / ( n*(5*n - 1)*(5*n - 3)*(5*n - 5)*(5*n - 7)*(5*n - 9) ) * a(n-2).
The o.g.f. exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + 12*x + 215*x^2 + 4564*x^3 + 106442*x^4 + ... has integer coefficients and equals 1/x * series reversion of x*(1 - x)^5/(1 + x)^7. See A262739.
a(n) ~ 2^n*5^(-5*n/2)*7^(7*n/2)/sqrt(2*Pi*n). - Ilya Gutkovskiy, Jul 31 2016
a(n) = Sum_{k = 0..floor(n/2)} binomial(12*n,n - 2*k) * binomial(5*n + k - 1,k).
O.g.f.: A(x) = Hypergeom([13/14, 11/14, 9/14, 5/14, 3/14, 1/14], [9/10, 7/10, 3/10, 1/2, 1/10], (2^2*7^7/5^5)*x^2) + 12*x*Hypergeom([10/7, 9/7, 8/7, 6/7, 5/7, 4/7], [7/5, 6/5, 4/5, 3/2, 3/5], (2^2*7^7/5^5)*x^2).
The o.g.f. is the diagonal of the bivariate rational function 1/(1 - t*(1 + x)^7/(1 - x)^5) and hence is algebraic by Stanley 1999, Theorem 6.33, p. 197. (End)
MAPLE
a := n -> 1/n! * (7*n)!/GAMMA(1 + 7*n/2) * GAMMA(1 + 5*n/2)/(5*n)!:
seq(a(n), n = 0..18);
MATHEMATICA
Table[1/n!*(7 n)!/(7 n/2)!*(5 n/2)!/(5 n)!, {n, 0, 17}] (* Michael De Vlieger, Oct 04 2015 *)
PROG
(PARI) a(n) = sum(k=0, n, binomial(7*n, k)*binomial(6*n-k-1, n-k));
(Python)
from math import factorial
from sympy import factorial2
def A262733(n): return int((factorial(7*n)*factorial2(5*n)<<n)//(factorial2(7*n)*factorial(5*n)*factorial (n))) # Chai Wah Wu, Aug 10 2023
a(n) = (6n)!n!/((3n)!(2n)!^2).
+10
10
1, 30, 2310, 204204, 19122246, 1848483780, 182327718300, 18236779032600, 1842826521244230, 187679234340049620, 19232182592635611060, 1980665038436368775400, 204826599735691440534300, 21255328931341321610645544, 2212241139727064219063537016
COMMENTS
According to page 781 of the cited reference the generating function F(x) for a(n) is algebraic but not obviously so and the minimal polynomial satisfied by F(x) is quite large.
This sequence is the particular case a = 3, b = 1 of the following result (see Bober, Theorem 1.2): let a, b be nonnegative integers with a > b and gcd(a,b) = 1. Then (2*a*n)!*(b*n)!/((a*n)!*(2*b*n)!*((a-b)*n)!) is an integer for all integer n >= 0. Other cases include A211419 (a = 3, b = 2), A211420 (a = 4, b = 1) and A211421 (a = 4, b = 3) and A061163 (a = 5, b = 1). The o.g.f. Sum_{n >= 1} a(n)*z^n is algebraic over the field of rational functions Q(z) (see Rodriguez-Villegas). - Peter Bala, Apr 10 2012
REFERENCES
M. Kontsevich and D. Zagier, Periods, in Mathematics Unlimited - 2001 and Beyond, Springer, Berlin, 2001, pp. 771-808.
R. P. Stanley, Enumerative Combinatorics Volume 2, Cambridge Univ. Press, 1999, Theorem 6.33, p. 197.
FORMULA
a(n) ~ 1/2*Pi^(-1/2)*n^(-1/2)*2^(2*n)*3^(3*n)*{1 - 1/72*n^-1 + ...}. - Joe Keane (jgk(AT)jgk.org), Jun 11 2002
n*(2*n-1)*a(n) -6*(6*n-1)*(6*n-5)*a(n-1)=0. - R. J. Mathar, Oct 26 2014
a(n) = Sum_{k = 0..2*n} binomial(6*n, k)*binomial(4*n - k - 1, 2*n - k).
a(n) = Sum_{k = 0..n} binomial(8*n, 2*n - 2*k)*binomial(2*n + k - 1, k).
O.g.f. A(x) = Hypergeom([5/6, 1/6], [1/2], 108*x).
a(n) = [x^(2*n)] H(x)^n, where H(x) = (1 + x)^6/(1 - x)^2. Cf. A091496 and A262732. It follows that the o.g.f. A(x) for this sequence is the diagonal of the bivariate rational generating function 1/2*( 1/(1 - t*H(sqrt(x))) + 1/(1 - t*H(-sqrt(x))) ) and hence is algebraic by Stanley 1999, Theorem 6.33, p. 197.
Let G(x) = 1/x * series reversion( x*(1 - x)/(1 + x)^3 ) = 1 + 4*x + 23*x^2 + 156*x^3 + 1162*x^4 + ..., essentially the o.g.f. for A007297. Then A(x^2) equals the even part of 1 + x*d/dx(Log(G(x)).
exp(Sum_{n >= 1} a(n)*x^n/n) = F(x), where F(x) = 1 + 30*x + 1605*x^2 + 107218*x^3 + 8043114*x^4 + 647773116*x^5 + 54730094637*x^6 + ... has integer coefficients since F(x^2) = G(x)*G(-x). Furthermore, F(x)^(1/6) = 1 + 5*x + 205*x^2 + 12328*x^3 + 874444*x^4 + 68022261*x^5 + 5613007167*x^6 + ... appears to have all integer coefficients. (End)
a(n) is the n-th moment of the positive weight function w(x) on x = (0,108), i.e., in Maple notation: a(n) = int(x^n*w(x), x=0..108), n=0,1,..., where w(x) = sqrt(3)*(1 + sqrt(1 - x/108))^(2/3)/(12*2^(1/3)*Pi*x^(5/6)*sqrt(1 - x/108)) + 2^(4/3) *sqrt(3)/(864*Pi*x^(1/6)*(1 + sqrt(1 - x/108))^(2/3)*sqrt(1 - x/108)). The weight function w(x) is singular at x=0 and at x=108 and is the solution of the Hausdorff moment problem. This solution is unique. - Karol A. Penson, Mar 01 2018
MAPLE
A061162 := n->(6*n)!*n!/((3*n)!*(2*n)!^2);
MATHEMATICA
a[n_] := 16^n Gamma[3 n + 1/2]/(Gamma[n + 1/2] Gamma[2 n + 1]);
PROG
(PARI) { for (n=0, 100, write("b061162.txt", n, " ", (6*n)!*n!/((3*n)!*(2*n)!^2)) ) } \\ Harry J. Smith, Jul 18 2009
Integral factorial ratio sequence: a(n) = (30*n)!*n!/((15*n)!*(10*n)!*(6*n)!).
+10
7
1, 77636318760, 53837289804317953893960, 43880754270176401422739454033276880, 38113558705192522309151157825210540422513019720, 34255316578084325260482016910137568877961925210286281393760
COMMENTS
The integrality of this sequence can be used to prove Chebyshev's estimate C(1)*x/log(x) <= #{primes <= x} <= C(2)*x/log(x), for x sufficiently large; the constant C(1) = 0.921292... and C(2) = 1.105550.... Chebyshev's approach used the related step function floor(x) -floor(x/2) -floor(x/3) -floor(x/5) +floor(x/30). See A182067.
This sequence is one of the 52 sporadic integral factorial ratio sequences of height 1 found by V. I. Vasyunin.
The o.g.f. sum {n >= 0} a(n)*z^n is a generalized hypergeometric series of type 8F7 (see Bober, Table 2, Entry 31) and is an algebraic function of degree 483840 over the field of rational functions Q(z) (see Rodriguez-Villegas). Bober remarks that the monodromy group of the differential equation satisfied by the o.g.f. is W(E_8), the Weyl group of the E_8 root system.
See the Bala link for the proof that a(n), n = 0,1,2..., is an integer.
Congruences: a(p^k) == a(p^(k-1)) ( mod p^(3*k) ) for any prime p >= 5 and any positive integer k (write a(n) as C(30*n,15*n)*C(15*n,5*n)/C(6*n,n) and use equation 39 in Mestrovic, p. 12). More generally, the congruences a(n*p^k) == a(n*p^(k-1)) ( mod p^(3*k) ) may hold for any prime p >= 5 and any positive integers n and k. Cf. A295431. - Peter Bala, Jan 24 2020
FORMULA
a(n) ~ 2^(14*n-1) * 3^(9*n-1/2) * 5^(5*n-1/2) / sqrt(Pi*n). - Vaclav Kotesovec, Aug 30 2016
MATHEMATICA
Table[(30 n)!*n!/((15 n)!*(10 n)!*(6 n)!), {n, 0, 5}] (* Michael De Vlieger, Oct 02 2015 *)
PROG
(PARI) a(n) = (30*n)!*n!/((15*n)!*(10*n)!*(6*n)!);
(Magma) [Factorial(30*n)*Factorial(n)/(Factorial(15*n)*Factorial(10*n)*Factorial(6*n)): n in [0..10]]; // Vincenzo Librandi, Oct 03 2015
CROSSREFS
Cf. A182067, A211418, A061162, A061163, A061164, A091496, A091527, A112292, A182400, A211419, A211420, A211421, A276100, A262733, A295431.
a(n) = (9*n)!*(5/2*n)!/((9*n/2)!*(5*n)!*(2*n)!).
+10
7
1, 96, 24310, 7028736, 2149374150, 678057476096, 218191487357116, 71184392021606400, 23459604526110889542, 7791432263086689484800, 2603575153867220801823060, 874329826463740757819785216, 294822072977645830504963830300
COMMENTS
Let a > b be nonnegative integers. The ratio of factorials (2*a*n)!*(b*n)!/( (a*n)!*(2*b*n)!*((a - b)*n)! ) is known to be an integer for all integer n >= 0 (see, for example, Bober, Theorem 1.1). We have the companion result: Let a > b be nonnegative integers. Then the ratio of factorials ((2*a + 1)*n)!*((b + 1/2)*n)!/(((a + 1/2)*n)!*((2*b + 1)*n)!*((a - b)*n)!) is an integer for all integer n >= 0. This is the case a = 4, b = 2. Other cases include A091496 (a = 2, b = 0), A091527 (a = 1, b = 0), A262732 (a = 2, b = 1), A262733 (a = 3, b = 2) and A276098 (a = 3, b = 1).
REFERENCES
R. P. Stanley, Enumerative Combinatorics Volume 2, Cambridge Univ. Press, 1999, Theorem 6.33, p. 197.
LINKS
J. W. Bober, Factorial ratios, hypergeometric series, and a family of step functions, 2007, arXiv:0709.1977v1 [math.NT], J. London Math. Soc., 79, Issue 2, (2009), 422-444.
FORMULA
a(n) = Sum_{k = 0..2*n} binomial(9*n, k)*binomial(7*n - k - 1, 2*n - k).
a(n) = Sum_{k = 0..n} binomial(14*n, 2*n - 2*k)*binomial(5*n + k - 1, k).
a(n) ~ 1/sqrt(4*Pi*n) * (3^18/5^5)^(n/2).
O.g.f. A(x) = Hypergeom([17/18, 13/18, 11/18, 7/18, 5/18, 1/18, 5/6, 1/6], [9/10, 7/10, 3/10, 1/10, 3/4, 1/4, 1/2], (3^18/5^5)*x^2) + 96*x*Hypergeom([13/9, 11/9, 10/9, 8/9, 7/9, 5/9, 4/3, 2/3], [7/5, 6/5, 4/5, 3/5, 5/4, 3/4, 3/2], (3^18/5^5)*x^2).
a(n) = [x^(2*n)] H(x)^n, where H(x) = (1 + x)^9/(1 - x)^5.
It follows that the o.g.f. A(x) for this sequence is the diagonal of the bivariate rational generating function 1/2*( 1/(1 - t*H(sqrt(x))) + 1/(1 - t*H(-sqrt(x))) ) and hence is algebraic by Stanley 1999, Theorem 6.33, p. 197.
Let F(x) = 1/x*Series_Reversion( x*sqrt((1 - x)^5/(1 + x)^9) ) and put G(x) = 1 + x*d/dx(Log(F(x)). Then A(x^2) = (G(x) + G(-x))/2.
MAPLE
seq(simplify((9*n)!*(5/2*n)!/((9*n/2)!*(5*n)!*(2*n)!)), n = 0..20);
MATHEMATICA
Table[((9n)!(5/2 n)!)/((9 n/2)!(5n)!(2n)!), {n, 0, 15}] (* Harvey P. Dale, May 21 2024 *)
PROG
(Python)
from math import factorial
from sympy import factorial2
def A276099(n): return int((factorial(9*n)*factorial2(5*n)<<(n<<1))//factorial2(9*n)//factorial(5*n)//factorial (n<<1)) # Chai Wah Wu, Aug 10 2023
a(n) = ((5n)!/(n!(2n)!))(gamma(1+n/2)/gamma(1+5n/2)).
+10
6
1, 16, 630, 28672, 1385670, 69206016, 3528923580, 182536110080, 9540949030470, 502682972323840, 26651569523959380, 1420217179365703680, 75998432812419471900, 4081125953526124511232, 219813190240007470094520
COMMENTS
Let a > b be nonnegative integers. Then the ratio of factorials ((2*a + 1)*n)!*((b + 1/2)*n)!/(((a + 1/2)*n)!*((2*b + 1)*n)!*((a - b)*n)!) is an integer for all integer n >= 0. This is the case a = 2, b = 0. - Peter Bala, Aug 28 2016
REFERENCES
R. P. Stanley, Enumerative Combinatorics Volume 2, Cambridge Univ. Press, 1999, Theorem 6.33, p. 197.
FORMULA
n*(n-1)*(2*n-1)*(2*n-3)*a(n) = 20*(5*n-1)*(5*n-3)*(5*n-7)*(5*n-9)*a(n-2).
a(n) = Sum_{k = 0..2*n} (binomial(5*n,k)*binomial(3*n - k - 1,2*n - k).
a(n) = Sum_{k = 0..n} binomial(6*n, 2*n - 2*k)*binomial(n + k - 1, k).
a(n) ~ 5^(5*n/2)/(2*sqrt(Pi*n)).
O.g.f. A(x) = Hypergeom([9/10, 7/10, 3/10, 1/10], [3/4, 1/2, 1/4], 3125*x^2) + 16*x*Hypergeom([7/5, 6/5, 4/5, 3/5], [5/4, 3/2, 3/4], 3125*x^2).
a(n) = [x^(2*n)] H(x)^n, where H(x) = (1 + x)^5/(1 - x). Cf. A061162 and A262732.
It follows that the o.g.f. for this sequence is the diagonal of the bivariate rational generating function 1/2*( 1/(1 - t*H(sqrt(x))) + 1/(1 - t*H(-sqrt(x))) ) and hence is algebraic by Stanley 1999, Theorem 6.33, p. 197.
exp(Sum_{n >= 1} a(n)*x^n/n) = 1 + 16*x + 443*x^2 + 15280*x^3 + 591998*x^4 + 24635360*x^5 + 1075884051*x^6 + ... has integer coefficients.
Let F(x) = 1/x*Series_Reversion( x*sqrt((1 - x)/(1 + x)^5) ) and put G(x) = 1 + x*d/dx(Log(F(x)). Then A(x) satisfies A(x^2) = (G(x) + G(-x))/2. (End)
MATHEMATICA
Table[((5 n)!/(n! (2 n)!)) (Gamma[1 + n/2]/Gamma[1 + 5 n/2]), {n, 0, 14}] (* or *)
Table[Sum[Binomial[6 n, 2 n - 2 k] Binomial[n + k - 1, k], {k, 0, n}], {n, 0, 14}] (* or *)
Table[Sum[Binomial[5 n, k] Binomial[3 n - k - 1, 2 n - k], {k, 0, 2 n}], {n, 0, 14}] (* Michael De Vlieger, Aug 28 2016 *)
PROG
(PARI) a(n)=16^n*sum(i=0, 2*n, binomial(i-1+(n-1)/2, i))
(Python)
from math import factorial
from sympy import factorial2
def A091496(n): return int((factorial(5*n)*factorial2(n)<<(n<<1))//(factorial(n)*factorial(n<<1)*factorial2 (5*n))) # Chai Wah Wu, Aug 10 2023
Search completed in 0.019 seconds
|