[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a090287 -id:a090287
     Sort: relevance | references | number | modified | created      Format: long | short | data
Smallest nonnegative number k not starting or ending with the digit 1 that forms a prime when it is sandwiched between n ones to the left of k and n ones to the right of k.
+10
4
0, 3, 4, 8, 36, 8, 5, 72, 28, 6, 79, 212, 23, 6, 73, 24, 52, 62, 3, 28, 220, 53, 75, 58, 228, 9, 265, 89, 214, 86, 215, 4, 7, 39, 295, 40, 87, 216, 97, 6, 264, 53, 287, 223, 4, 239, 259, 25, 57, 364, 49, 38, 93, 86, 27, 30, 80, 24, 6, 356, 50, 645, 395, 206
OFFSET
1,2
COMMENTS
n = 1 is the only case where a(n) = 0, since for any n > 1, A138148(n) is divisible by A002275(n).
No n exists such that a(n) = 2, since any number of the form A100706(n)+A011557(n) is of the form A000533(n)*A002275(n+1) (see comment by Robert Israel in A107123).
a(n) = 3 iff n is in A107123.
a(n) = 4 iff n is in A107124.
If k has an even number of digits and is a multiple of 11, then k is not a term. If k = (10^r+1)(10^m-1)/9 for some m > 0, r >= 0, then k is not a term. If A272232(k) = 0, then k is not a term. - Chai Wah Wu, Nov 08 2019
LINKS
EXAMPLE
a(1) = 0, because 101 is prime.
a(5) = 36, because the smallest x >= 0 such that 11111_x_11111 (where '_' denotes concatenation) is prime is 36. The decimal expansion of that prime is 111113611111.
MATHEMATICA
Table[k = 0; s = Table[1, {n}]; While[Or[!PrimeQ[FromDigits[s ~Join~ IntegerDigits[k] ~Join~ s]], Or[First@ IntegerDigits@ k == 1, Last@ IntegerDigits@ k == 1]], k++]; k, {n, 64}] (* Michael De Vlieger, May 28 2015 *)
PROG
(PARI) a000042(n) = (10^n-1)/9
a(n) = my(k=0); while(k==10 || k%10==1 || k\(10^(#Str(k)-1))==1 || !ispseudoprime(eval(Str(a000042(n), k, a000042(n)))), k++); k
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Felix Fröhlich, May 28 2015
STATUS
approved
Smallest prime obtained by appending a number with identical digits to n or 0 if no such prime exists.
+10
3
2, 11, 23, 31, 41, 53, 61, 71, 83, 97, 101, 113, 127, 131, 149, 151, 163, 173, 181, 191, 2011, 211, 223, 233, 241, 251, 263, 271, 281, 293, 307, 311, 3299, 331, 347, 353, 367, 373, 383, 397, 401, 419, 421, 431, 443, 457, 461, 479, 487, 491, 503, 511111, 521, 5333
OFFSET
0,1
COMMENTS
For n <= 15392, a(n) = 0 if and only if n = 6930. Conjecture: if a(n) = 0, then n is divisible by 3. Conjecture verified for n <= 10^6. a(n) = 0 for n = 6930, 50358, 56574, 72975.
PROG
(Python)
from gmpy2 import mpz, digits, is_prime
def A256481(n, limit=2000):
....if n in (6930, 50358, 56574, 72975):
........return 0
....if n == 0:
........return 2
....sn = str(n)
....for i in range(1, limit+1):
........for j in range(1, 10, 2):
............si = digits(j, 10)*i
............p = mpz(sn+si)
............if is_prime(p):
................return int(p)
....else:
........return 'search limit reached.'
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Chai Wah Wu, Mar 31 2015
STATUS
approved
Numbers with all digits equal and from the set {1, 3, 7, 9}.
+10
3
1, 3, 7, 9, 11, 33, 77, 99, 111, 333, 777, 999, 1111, 3333, 7777, 9999, 11111, 33333, 77777, 99999, 111111, 333333, 777777, 999999, 1111111, 3333333, 7777777, 9999999, 11111111, 33333333, 77777777, 99999999, 111111111, 333333333, 777777777, 999999999, 1111111111, 3333333333, 7777777777, 9999999999
OFFSET
1,2
COMMENTS
Candidates for prefixes and suffixes in A090287.
FORMULA
From Colin Barker, Nov 09 2020: (Start)
G.f.: x*(1 + 3*x + 7*x^2 + 9*x^3) / ((1 - x)*(1 + x)*(1 + x^2)*(1 - 10*x^4)).
a(n) = 11*a(n-4) - 10*a(n-8) for n>8.
(End)
MAPLE
a:= n-> [1, 3, 7, 9][1+irem(n-1, 4)]*(10^iquo(n+3, 4)-1)/9:
seq(a(n), n=1..50); # Alois P. Heinz, Nov 09 2020
MATHEMATICA
A338712={}; Do[AppendTo[A338712, FromDigits[ConstantArray[#, i]] & /@{ 1, 3, 7, 9}], {i, 10}]; A338712//Flatten - Robert Price, Sep 21 2023
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
N. J. A. Sloane, Nov 08 2020, following a suggestion from Hugo Pfoertner
STATUS
approved
Smallest palindromic prime by adding at least one digit to both the left and right of n
+10
2
101, 313, 727, 131, 11411, 151, 10601, 373, 181, 191, 30103, 1114111, 1120211, 11311, 11411, 31513, 1160611, 1117111, 18181, 71917, 30203, 1120211, 72227, 32323, 12421, 1250521, 36263, 12721, 12821, 39293, 10301, 11311, 32323, 13331, 14341, 33533, 16361, 77377
OFFSET
0,1
PROG
(Python)
from __future__ import division
from sympy import isprime
def palgenrange2(m, l): # generator of odd-length palindromes of length at least m and at most 2*l
....if m == 1:
........yield 0
....for x in range(m//2+1, l+1):
........n = 10**(x-1)
........for y in range(n, n*10):
............s = str(y)
............yield int(s+s[-2::-1])
def A256048(n):
....sn = str(n)
....for p in palgenrange2(len(sn)+2, len(sn)+20):
........if sn in str(p)[1:-1] and isprime(p):
............break
....else:
........return 'search limit reached'
....return p # Chai Wah Wu, Mar 22 2015
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Felix Fröhlich, Mar 10 2015
EXTENSIONS
a(10), a(12), a(16), a(18) corrected by Chai Wah Wu, Mar 22 2015
STATUS
approved
Smallest prime obtained by appending n to a nonzero number with identical digits or 0 if no such prime exists.
+10
2
0, 11, 0, 13, 0, 0, 0, 17, 0, 19, 0, 211, 0, 113, 0, 0, 0, 317, 0, 419, 0, 421, 0, 223, 0, 0, 0, 127, 0, 229, 0, 131, 0, 233, 0, 0, 0, 137, 0, 139, 0, 241, 0, 443, 0, 0, 0, 347, 0, 149, 0, 151, 0, 353, 0, 0, 0, 157, 0, 359, 0, 461, 0, 163, 0, 0, 0, 167, 0, 269
OFFSET
0,2
COMMENTS
a(n) = 0 if n is even or a multiple of 5. Conjecture: all other terms are nonzero. Conjecture verified for n <= 10^7.
"Appending" means "on the right".
PROG
(Python)
from gmpy2 import digits, mpz, is_prime
def A256480(n, limit=2000):
....sn = str(n)
....if not (n % 2 and n % 5):
........return 0
....for i in range(1, limit+1):
........for j in range(1, 10):
............si = digits(j, 10)*i
............p = mpz(si+sn)
............if is_prime(p):
................return int(p)
....else:
........return 'search limit reached.'
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Chai Wah Wu, Mar 31 2015
STATUS
approved
a(n) = smallest positive number k with all digits equal such that the concatenation k||n||k is prime, or -1 if no such k exists.
+10
2
1, 3, 7, 1, 11, 1, 7777, 3, 1, 1, 9, -1, 7, 33, 99, 1, 3, 1, 1, 9, 1, 11, -1, 1, 7, 3, 7777777777, 1111, 111, 1, 1, 3, 1, -1, 3, 33, 1, 3, 1, 77777777777777, 111, 3, 1111111111111111111111111111111111111111, 3, -1, 1, 3, 1, 1, 999, 7, 1, 11, 1, 7, -1, 33, 1, 3, 3, 1, 3, 1
OFFSET
0,2
COMMENTS
See A090287 for more information.
From Robert Price, Sep 20 2023: (Start)
For a(366), k is a string of 8441 1's.
The sequence then continues: 77, 1, 1, 3, 1, 1, 9, 7777777, 1, 11, 3, 1, 11, 9, 77, 11111, 1, 1, 33333, 3, 7, 9, 3, 1, 77, 1, 1, 9, 7777777777 until a(396) where k is a sequence of 269 1's.
The sequence then continues: 9, 777, 11, 9, 1, 7, 3, 7, 1, 11, 1, 1, 9, 9, 1111, 3, 999, 77777, 99, 7, 7, 3, 7, -1, 3, 1, 11, 77, 1, 77, 3, 1, 7, 3, 3, 1, 111111, 1, 7, 99, 7, 1111, 9, 1, 1, 11, 1, 7777777, 11, 1, 1111, 3, 1111, 7, 3, 7, 11, 3, 1, 1, 111, 3, 1, 3, 3, 1, 33, 9, 11, 33, 3, 7, 3, 3, 7, 99, 1, 1, 11, 3, 1, 9, 7, 77, 9, 1, 1, 3, 1, 7777, 33, 3, 1, 33, 3, 77, 77, 9, 1, 3, 33, 11111, 9, 9. (End)
EXAMPLE
a(3) = 1 because 131 is prime.
a(4) = 11 because 11411 is prime, and all of 141, 242, 343, ..., 949 are composite.
CROSSREFS
Cf. A090287.
Related sequences: A010785, A068695, A091088, A228323, A228325, A336893, A338712 (see also the Index link above).
KEYWORD
sign,base
AUTHOR
N. J. A. Sloane, Nov 08 2020
EXTENSIONS
More terms from Alois P. Heinz, Nov 08 2020
STATUS
approved
Smallest prime of the form "Concatenate(m,n,m)".
+10
1
101, 313, 727, 131, 11411, 151, 13613, 373, 181, 191, 9109, 131113, 7127, 171317, 131413, 1151, 3163, 1171, 1181, 9199, 1201, 112111, 172217, 1231, 7247, 3253, 372637, 172717, 232823, 1291, 1301, 3313, 1321, 233323, 3343, 273527, 1361, 3373, 1381, 173917, 174017
OFFSET
0,1
LINKS
EXAMPLE
111 is divisible by 3, and 212 is divisible by 2, but 313 is prime; therefore, a(1) = 313.
MAPLE
f:= proc(n) local dn, x, dx, p;
dn:= 10^(1+ilog10(n));
for x from 1 by 2 do if igcd(x, n) = 1 then
dx:= 10^(1+ilog10(x));
p:= x*(1+dx*dn)+n*dx;
if isprime(p) then return(p) fi
fi od
end proc:
101, seq(f(n), n=1..100); # Robert Israel, Apr 07 2015
# second Maple program:
a:= proc(n) local m, p; for m do
p:= parse(cat(m, n, m));
if isprime(p) then break fi od; p
end:
seq(a(n), n=0..50); # Alois P. Heinz, Mar 16 2020
MATHEMATICA
mnmPrimes = {}; f[m_, n_] := FromDigits[Flatten[{IntegerDigits[m], IntegerDigits[n], IntegerDigits[m]}]]; Do[m = 1; While[True, If[PrimeQ[f[m, n]], AppendTo[mnmPrimes, f[m, n]]; Break[]]; m+=2], {n, 0, 40}]; mnmPrimes
PROG
(PARI) a(n) = {m=1; while (! isprime(p=eval(concat(Str(m), concat(Str(n), Str(m))))), m+=2); p; } \\ Michel Marcus, Mar 23 2015
(Sage)
def A252942(n):
m = 1
sn = str(n)
while True:
sm = str(m)
a = int(sm + sn + sm)
if is_prime(a):
return a
m += 2
A252942(40) # Danny Rorabaugh, Mar 31 2015
(Haskell)
a252942 n = head [y | m <- [1..],
let y = read (show m ++ show n ++ show m) :: Integer, a010051' y == 1]
-- Reinhard Zumkeller, Apr 08 2015
CROSSREFS
Cf. A010051.
KEYWORD
base,easy,nonn
AUTHOR
Ivan N. Ianakiev, Mar 23 2015
STATUS
approved

Search completed in 0.014 seconds