[go: up one dir, main page]

login
Search: a099602 -id:a099602
     Sort: relevance | references | number | modified | created      Format: long | short | data
Row sums of triangle A099602, in which row n equals the inverse binomial transform of column n of the triangle of trinomial coefficients (A027907).
+20
2
1, 2, 4, 12, 20, 64, 104, 336, 544, 1760, 2848, 9216, 14912, 48256, 78080, 252672, 408832, 1323008, 2140672, 6927360, 11208704, 36272128, 58689536, 189923328, 307302400, 994451456, 1609056256, 5207015424, 8425127936, 27264286720
OFFSET
0,2
FORMULA
a(n) = fibonacci(n+1)*2^[(n+1)/2]. a(n) = 6*a(n-2) - 4*a(n-4) for n>4. G.f.: (1+2*x-2*x^2)/(1-6*x^2+4*x^4).
EXAMPLE
Sequence begins: {1*1, 1*2, 2*2, 3*4, 5*4, 8*8, 13*8, 21*16, 34*16, ...}.
MATHEMATICA
LinearRecurrence[{0, 6, 0, -4}, {1, 2, 4, 12}, 30] (* Harvey P. Dale, Aug 09 2016 *)
PROG
(PARI) a(n)=fibonacci(n+1)*2^((n+1)\2)
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 25 2004
STATUS
approved
Antidiagonal sums of triangle A099602, in which row n equals the inverse binomial transform of column n of the triangle of trinomial coefficients (A027907).
+20
2
1, 1, 2, 4, 7, 12, 23, 40, 72, 131, 233, 420, 756, 1355, 2438, 4381, 7868, 14144, 25413, 45661, 82058, 147444, 264943, 476092, 855483, 1537236, 2762296, 4963591, 8919173, 16027012, 28799164, 51749715, 92989886, 167094985, 300255720
OFFSET
0,3
FORMULA
G.f.: (1+x-x^3)/(1-2*x^2-3*x^3+2*x^5+x^6).
a(n) = 2*a(n-2) + 3*a(n-3) - 2*a(n-5) - a(n-6) for n>=6.
MATHEMATICA
LinearRecurrence[{0, 2, 3, 0, -2, -1}, {1, 1, 2, 4, 7, 12}, 35] (* Jean-François Alcover, Oct 30 2017 *)
PROG
(PARI) a(n)=polcoeff((1+x-x^3)/(1-2*x^2-3*x^3+2*x^5+x^6)+x*O(x^n), n, x)
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 25 2004
STATUS
approved
Matrix inverse of triangle A099602, read by rows, where row n of A099602 equals the inverse binomial transform of column n of the triangle of trinomial coefficients (A027907).
+20
2
1, -1, 1, 1, -2, 1, -1, 3, -4, 1, 1, -4, 12, -5, 1, -1, 5, -34, 17, -7, 1, 1, -6, 98, -51, 32, -8, 1, -1, 7, -294, 149, -124, 40, -10, 1, 1, -8, 919, -443, 448, -164, 61, -11, 1, -1, 9, -2974, 1362, -1576, 612, -298, 72, -13, 1, 1, -10, 9891, -4336, 5510, -2188, 1294, -370, 99, -14, 1, -1, 11, -33604, 14227, -19322, 7698
OFFSET
0,5
COMMENTS
Row sums are A104496. Absolute row sums form A014137 (partial sums of Catalan numbers). Column 2 is signed A014143.
FORMULA
G.f.: A(x, y) = (1 + x*y/(1+x))/(1+x - x^2*y^2*Catalan(-x)^2), also G.f.: Column_k(x) = Catalan(-x)^(2*[k/2])/(1+x)^[(k+3)/2], where Catalan(x)=(1-(1-4*x)^(1/2))/(2*x) (cf. A000108).
EXAMPLE
Rows begin:
1;
-1,1;
1,-2,1;
-1,3,-4,1;
1,-4,12,-5,1;
-1,5,-34,17,-7,1;
1,-6,98,-51,32,-8,1;
-1,7,-294,149,-124,40,-10,1;
1,-8,919,-443,448,-164,61,-11,1;
-1,9,-2974,1362,-1576,612,-298,72,-13,1; ...
PROG
(PARI) {T(n, k)=local(X=x+x*O(x^n), Y=y+y*O(y^k)); polcoeff(polcoeff( (1+X*Y/(1+X))/(1+X-Y^2*(1-(1+4*X)^(1/2))^2/4), n, x), k, y)}
KEYWORD
sign,tabl
AUTHOR
Paul D. Hanna, Mar 11 2005
STATUS
approved
Triangle, read by rows, such that row n equals the inverse binomial transform of column n of the triangle A034870 of coefficients in successive powers of the trinomial (1+2*x+x^2), omitting leading zeros.
+10
3
1, 2, 2, 1, 5, 4, 4, 16, 20, 8, 1, 14, 41, 44, 16, 6, 50, 146, 198, 128, 32, 1, 27, 155, 377, 456, 272, 64, 8, 112, 560, 1408, 1992, 1616, 704, 128, 1, 44, 406, 1652, 3649, 4712, 3568, 1472, 256, 10, 210, 1572, 6084, 14002, 20330, 18880, 10912, 3584, 512, 1, 65
OFFSET
0,2
COMMENTS
Row sums form A099606, where A099606(n) = Pell(n+1)*2^[(n+1)/2]. Central coefficients of even-indexed rows form A026000, where A026000(n) = T(2n,n), where T = Delannoy triangle (A008288). Antidiagonal sums form A099607.
FORMULA
G.f.: (1+2*(y+1)*x-(y+1)*x^2)/(1-(2*y+1)*(2*y+2)*x^2+(y+1)^2*x^4). T(n, n) = 2^n.
EXAMPLE
Rows begin:
[1],
[2,2],
[1,5,4],
[4,16,20,8],
[1,14,41,44,16],
[6,50,146,198,128,32],
[1,27,155,377,456,272,64],
[8,112,560,1408,1992,1616,704,128],
[1,44,406,1652,3649,4712,3568,1472,256],
[10,210,1572,6084,14002,20330,18880,10912,3584,512],
[1,65,870,5202,17469,36365,48940,42800,23552,7424,1024],...
The binomial transform of row 2 equals column 2 of A034870:
BINOMIAL[1,5,4] = [1,6,15,28,45,66,91,120,153,...].
The binomial transform of row 3 equals column 3 of A034870:
BINOMIAL[4,16,20,8] = [4,20,56,120,220,364,560,...].
The binomial transform of row 4 equals column 4 of A034870:
BINOMIAL[1,14,41,44,16] = [1,15,70,210,495,1001,...].
MATHEMATICA
CoefficientList[CoefficientList[Series[(1 + 2*(y + 1)*x - (y + 1)*x^2)/(1 - (2*y + 1)*(2*y + 2)*x^2 + (y + 1)^2*x^4), {x, 0, 49}, {y, 0, 49}], x],
y] // Flatten (* G. C. Greubel, Apr 14 2017 *)
PROG
(PARI) {T(n, k)=polcoeff(polcoeff((1+2*(y+1)*x-(y+1)*x^2)/(1-(2*y+1)*(2*y+2)*x^2+(y+1)^2*x^4)+x*O(x^n), n, x)+y*O(y^k), k, y)}
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Oct 25 2004
STATUS
approved
Expansion of 2*(2*x+1)/((x+1)*(sqrt(4*x+1)+1)).
+10
3
1, 0, 0, -1, 5, -19, 67, -232, 804, -2806, 9878, -35072, 125512, -452388, 1641028, -5986993, 21954973, -80884423, 299233543, -1111219333, 4140813373, -15478839553, 58028869153, -218123355523, 821908275547, -3104046382351, 11747506651599, -44546351423299, 169227201341651
OFFSET
0,5
COMMENTS
Previous name was: Row sums of triangle A104495. A104495 equals the matrix inverse of triangle A099602, where row n of A099602 equals the inverse Binomial transform of column n of the triangle of trinomial coefficients (A027907).
Absolute row sums of triangle A104495 forms A014137 (partial sums of Catalan numbers).
LINKS
FORMULA
G.f.: A(x) = (1 + 2*x)/(1+x)/(1+x - x^2*Catalan(-x)^2), where Catalan(x)=(1-(1-4*x)^(1/2))/(2*x) (cf. A000108).
a(n) ~ (-1)^n * 2^(2*n+1) / (3*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 06 2014
D-finite with recurrence: (n+1)*a(n) +(7*n-3)*a(n-1) +2*(7*n-12)*a(n-2) +4*(2*n-5)*a(n-3)=0. - R. J. Mathar, Jan 23 2020
MAPLE
gf := (2*(2*x+1))/((x+1)*(sqrt(4*x+1)+1)): ser := series(gf, x, 30):
seq(coeff(ser, x, n), n=0..28); # Peter Luschny, Apr 25 2016
MATHEMATICA
CoefficientList[Series[(1+2*x)/(1+x)/(1+x - (1-(1+4*x)^(1/2))^2/4), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 06 2014 *)
PROG
(PARI) {a(n)=local(X=x+x*O(x^n)); polcoeff( (1+2*X)/(1+X)/(1+X-(1-(1+4*X)^(1/2))^2/4), n, x)}
(Python)
from itertools import accumulate
def A104496_list(size):
if size < 1: return []
L, accu = [1], [1]
for n in range(size-1):
accu = list(accumulate(accu + [-accu[0]]))
L.append(-(-1)**n*accu[-1])
return L
print(A104496_list(29)) # Peter Luschny, Apr 25 2016
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Paul D. Hanna, Mar 11 2005
EXTENSIONS
New name using the g.f. of the author by Peter Luschny, Apr 25 2016
STATUS
approved

Search completed in 0.005 seconds