[go: up one dir, main page]

login
Search: a099314 -id:a099314
     Sort: relevance | references | number | modified | created      Format: long | short | data
The minimal numbers: sequence A005179 arranged in increasing order.
(Formerly M1022)
+10
53
1, 2, 4, 6, 12, 16, 24, 36, 48, 60, 64, 120, 144, 180, 192, 240, 360, 576, 720, 840, 900, 960, 1024, 1260, 1296, 1680, 2520, 2880, 3072, 3600, 4096, 5040, 5184, 6300, 6480, 6720, 7560, 9216, 10080, 12288, 14400, 15120, 15360, 20160, 25200, 25920, 27720, 32400, 36864, 44100
OFFSET
1,2
COMMENTS
Numbers k such that there is no x < k such that A000005(x) = A000005(k). - Benoit Cloitre, Apr 28 2002
A047983(a(n)) = 0. - Reinhard Zumkeller, Nov 03 2015
Subsequence of A025487. If some m in A025487 is the first term in that sequence having its number of divisors, m is in this sequence. - David A. Corneth, Aug 31 2019
REFERENCES
J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 86.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..100000 (first 1000 from T. D. Noe and to 10000 from David A. Corneth)
Ron Brown, The minimal number with a given number of divisors, Journal of Number Theory 116:1 (2005), pp. 150-158.
M. E. Grost, The smallest number with a given number of divisors, Amer. Math. Monthly, 75 (1968), 725-729.
J. Roberts, Lure of the Integers, Annotated scanned copy of pp. 81, 86 with notes.
Anna K. Savvopoulou and Christopher M. Wedrychowicz, On the smallest number with a given number of divisors, The Ramanujan Journal, 2015, Vol. 37, pp. 51-64.
MAPLE
for n from 1 to 10^5 do
t:= numtheory:-tau(n);
if not assigned(B[t]) then B[t]:= n fi;
od:
sort(map(op, [entries(B)])); # Robert Israel, Nov 11 2015
MATHEMATICA
A007416 = Reap[ For[ s = 1, s <= 10^5, s++, If[ Abs[ Product[ DivisorSigma[0, i] - DivisorSigma[0, s], {i, 1, s-1}]] > 0, Print[s]; Sow[s]]]][[2, 1]] (* Jean-François Alcover, Nov 19 2012, after Pari *)
PROG
(PARI) for(s=1, 10^6, if(abs(prod(i=1, s-1, numdiv(i)-numdiv(s)))>0, print1(s, ", ")))
(PARI) is(n)=my(d=numdiv(n)); for(i=1, n-1, if(numdiv(i)==d, return(0))); 1 \\ Charles R Greathouse IV, Feb 20 2013
(PARI)
A283980(n, f=factor(n))=prod(i=1, #f~, my(p=f[i, 1]); if(p==2, 6, nextprime(p+1))^f[i, 2])
A025487do(e) = my(v=List([1, 2]), i=2, u = 2^e, t); while(v[i] != u, if(2*v[i] <= u, listput(v, 2*v[i]); t = A283980(v[i]); if(t <= u, listput(v, t))); i++); Set(v)
winnow(v, lim=v[#v])=my(m=Map(), u=List()); for(i=1, #v, if(v[i]>lim, break); my(t=numdiv(v[i])); if(!mapisdefined(m, t), mapput(m, t, 0); listput(u, v[i]))); m=0; Vec(u)
list(lim)=winnow(A025487do(logint(lim\1-1, 2)+1), lim) \\ Charles R Greathouse IV, Nov 17 2022
(Haskell)
a007416 n = a007416_list !! (n-1)
a007416_list = f 1 [] where
f x ts = if tau `elem` ts then f (x + 1) ts else x : f (x + 1) (tau:ts)
where tau = a000005' x
-- Reinhard Zumkeller, Apr 18 2015
CROSSREFS
Subsequence of A025487; A002182 is a subsequence.
Cf. A000005, A047983, A166721 (subsequence of squares).
Cf. A053212 and A064787 (the sequence {A000005(a(n))} and its inverse permutation).
KEYWORD
nonn,easy,nice
STATUS
approved
Greatest 3-smooth number dividing the n-th minimal number.
+10
6
1, 2, 4, 6, 12, 16, 24, 36, 48, 12, 64, 24, 144, 36, 192, 48, 72, 576, 144, 24, 36, 192, 1024, 36, 1296, 48, 72, 576, 3072, 144, 4096, 144, 5184, 36, 1296, 192, 216, 9216, 288, 12288, 576, 432, 3072, 576, 144, 5184, 72, 1296, 36864, 36, 1296, 9216, 46656, 288
OFFSET
1,2
COMMENTS
A minimal number is the smallest number with a given number of divisors, see A007416.
LINKS
David A. Corneth, Table of n, a(n) for n = 1..20000 (first 1000 terms from Amiram Eldar)
FORMULA
a(n) = A065331(A007416(n)).
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Oct 12 2004
STATUS
approved
Exponent of greatest power of 2 dividing the n-th minimal number.
+10
5
0, 1, 2, 1, 2, 4, 3, 2, 4, 2, 6, 3, 4, 2, 6, 4, 3, 6, 4, 3, 2, 6, 10, 2, 4, 4, 3, 6, 10, 4, 12, 4, 6, 2, 4, 6, 3, 10, 5, 12, 6, 4, 10, 6, 4, 6, 3, 4, 12, 2, 4, 10, 6, 5, 4, 6, 12, 16, 10, 3, 6, 10, 5, 6, 4, 4, 6, 12, 16, 6, 4, 10, 6, 18, 4, 10, 12, 5, 5, 10, 12, 4, 5, 16
OFFSET
1,3
COMMENTS
A minimal number is the smallest number with a given number of divisors, see A007416.
LINKS
David A. Corneth and Amiram Eldar, Table of n, a(n) for n = 1..10000
FORMULA
a(n) = A007814(A007416(n)).
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Oct 12 2004
STATUS
approved
Exponent of greatest power of 3 dividing the smallest number having exactly n divisors.
+10
5
0, 0, 0, 1, 0, 1, 0, 1, 2, 1, 0, 1, 0, 1, 2, 1, 0, 2, 0, 1, 2, 1, 0, 2, 4, 1, 2, 1, 0, 2, 0, 1, 2, 1, 4, 2, 0, 1, 2, 1, 0, 2, 0, 1, 2, 1, 0, 2, 6, 4, 2, 1, 0, 2, 4, 1, 2, 1, 0, 2, 0, 1, 2, 3, 4, 2, 0, 1, 2, 4, 0, 2, 0, 1, 4, 1, 6, 2, 0, 3, 2, 1, 0, 2, 4, 1, 2, 1, 0, 2, 6, 1, 2, 1, 4, 2, 0, 6, 2, 4, 0, 2, 0, 1, 4
OFFSET
1,9
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..2000 from Antti Karttunen computed from the b-file of A005179 provided by Don Reble)
FORMULA
a(n) = A007949(A005179(n)).
MATHEMATICA
A005179 = Cases[Import["https://oeis.org/A005179/b005179.txt", "Table"], {_, _}][[All, 2]];
a[n_] := IntegerExponent[A005179[[n]], 3];
Array[a, 2000] (* Jean-François Alcover, Dec 10 2021 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Oct 12 2004
EXTENSIONS
More terms from Antti Karttunen, Oct 05 2017
STATUS
approved

Search completed in 0.005 seconds