Displaying 1-10 of 11 results found.
G.f. A(x) satisfies: A(x*G(x)) = G(x), where G(x) is the g.f. for A098614(n) = Fibonacci(n+1)*Catalan(n).
+20
15
1, 1, 3, 5, 13, 25, 61, 125, 295, 625, 1447, 3125, 7151, 15625, 35491, 78125, 176597, 390625, 880125, 1953125, 4390901, 9765625, 21920913, 48828125, 109486993, 244140625, 547018941, 1220703125, 2733608905, 6103515625, 13662695645, 30517578125, 68294088535, 152587890625, 341399727335, 762939453125, 1706739347095, 3814697265625, 8532741458075, 19073486328125, 42660172763995, 95367431640625
COMMENTS
G.f. satisfies: A(x) = x/(series reversion of x*G098614(x)), where G098614 is the g.f. for A098614 = {1*1, 1*1, 2*2, 3*5, 5*14, 8*42, 13*132, ...}.
Hankel transform is 2^n. Image of F(n+1) under the Riordan array (c(x^2),xc(x^2)), c(x) the g.f. of A000108. The sequence 0,1,1,3,5,... has general term Sum_{k=0..floor(n/2)} (C(n-1,k) - C(n-1,k-1))*F(n-2k). It is the image of the Fibonacci numbers under the transform of generating functions g(x)-> g(xc(x^2)), c(x) the g.f. of A000108. This sequence has Hankel transform -(-4)^((n-1)/2)(1-(-1)^n)/2. - Paul Barry, Oct 01 2007
The sequence of fractions 1, 1/2, 3/4, 5/8, 13/16, 25/32, ... or a(n)/2^n is the image of F(n+1) under the Chebyshev related (rational) Riordan array c((x/2)^2),(x/2)c((x/2)^2)) where c(x) is the g.f. of A000108. The Hankel transform of this fraction sequence is 1/(2^(n^2)). - Paul Barry, Jun 17 2008
FORMULA
G.f.: (x + sqrt(1-4*x^2)) / (1-5*x^2).
G.f. satisfies: A(x) = sqrt(1 + 2*x*A(x) + 5*x^2*A(x)^2). - Paul D. Hanna, Nov 18 2014
a(2*n+1) = 5^n.
a(n) = Sum_{k=0..floor((n+1)/2)} (C(n,k) - C(n,k-1))*Fibonacci(n-2k+1). - Paul Barry, Oct 01 2007
G.f.: 1/(1-x-2x^2/(1-x^2/(1-x^2/(1-x^2/(1-x^2/(1-.... (continued fraction). - Paul Barry, Feb 09 2009
a(n) = Sum_{k=0..n} binomial((n-1)/2,(n-k)/2)*2^(n-k-1)*(1+(-1)^(n-k)). - Vladimir Kruchinin, Apr 16 2011
a(n) is the upper left term in M^n, M = an infinite square production matrix as follows:
1, 1, 1, 0, 0, 0, ...
1, 0, 0, 1, 0, 0, ...
1, 0, 0, 0, 1, 0, ...
0, 1, 0, 0, 0, 1, ...
0, 0, 1, 0, 0, 0, ...
0, 0, 0, 1, 0, 0, ...
0, 0, 0, 0, 1, 0, ...
0, 0, 0, 0, 0, 1, ...
... (End)
n*a(n) +(n-1)*a(n-1) -3*(3*n-4)*a(n-2) -3*(3*n-7)*a(n-3) +20*(n-3)*a(n-4) +20*(n-4)*a(n-5) = 0. - R. J. Mathar, Jul 21 2017
MATHEMATICA
Array[Sum[Binomial[(# - 1)/2, (# - k)/2]*2^(# - k - 1)*((-1)^(# - k) + 1), {k, 0, #}] &, 42, 0] (* or *)
CoefficientList[Series[(Sqrt[1 - 4 x^2] + x)/(1 - 5 x^2), {x, 0, 41}], x] (* Michael De Vlieger, May 20 2021 *)
PROG
(PARI) { a(n) = polcoeff((sqrt(1-4*x^2+x^2*O(x^n))+x)/(1-5*x^2), n) }
for(n=0, 50, print1(a(n), ", "))
(Maxima) a(n):=sum(binomial((n-1)/2, (n-k)/2)*2^(n-k-1)*((-1)^(n-k)+1), k, 0, n); /* Vladimir Kruchinin, Apr 16 2011 */
(Magma)
R<x>:=PowerSeriesRing(Rationals(), 30);
Coefficients(R!( (x+Sqrt(1-4*x^2))/(1-5*x^2) )); // G. C. Greubel, Jul 31 2024
(SageMath)
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (x+sqrt(1-4*x^2))/(1-5*x^2) ).list()
1, 2, 10, 60, 406, 2940, 22308, 175032, 1408550, 11561836, 96425836, 814773960, 6960289532, 60012947800, 521582661000, 4564643261040, 40190674554630, 355772529165900, 3164408450118300, 28266363849505320, 253466716153665300, 2280803103062033160, 20588945107316958840
COMMENTS
Radius of convergence: r = (sqrt(2)-1)/4, where A(r) = sqrt(2+sqrt(2)).
More generally, given {S} such that: S(n) = b*S(n-1) + c*S(n-2), |b|>0, |c|>0, then Sum_{n>=0} S(n)*Catalan(n)*x^n = sqrt( (1-2*b*x - sqrt(1-4*b*x-16*c*x^2))/(2*b^2+8*c) )/x.
FORMULA
G.f.: A(x) = sqrt( (1-4*x - sqrt(1-8*x-16*x^2))/16 )/x.
Run lengths of zeros (mod 10) equal (5^k - (-1)^k)/2 - 1 starting at index (5^k + (-1)^k)/2:
a(n) == 0 (mod 10) for n = (5^k + (-1)^k)/2 through n = 5^k - 1 when k>=1.
a(n) ~ 2^(2*n-3/2) * (1+sqrt(2))^(n+1) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, May 09 2014
A(-x) = 1/x * series reversion( x*(2*x + sqrt(1 - 4*x^2)) ). Compare with the o.g.f. B(x) of the central binomial numbers A000984, which satisfies B(-x) = 1/x * series reversion( x*(2*x + sqrt(1 + 4*x^2)) ). See also A214377. - Peter Bala, Oct 19 2015
n*(n+1)*a(n) -4*n*(2*n-1)*a(n-1) -4*(2*n-1)*(2*n-3)*a(n-2)=0. - R. J. Mathar, Nov 17 2018
Sum_{n>=0} a(n)/16^n = 2*sqrt(3-sqrt(7)). - Amiram Eldar, May 05 2023
EXAMPLE
Sequence begins: [1*1, 2*1, 5*2, 12*5, 29*14, 70*42, 169*132, 408*429,...].
MATHEMATICA
With[{nn=30}, Times@@@Thread[{LinearRecurrence[{2, 1}, {1, 2}, nn], CatalanNumber[ Range[0, nn-1]]}]] (* Harvey P. Dale, Jan 04 2012 *)
a[n_] := Fibonacci[n + 1, 2] * CatalanNumber[n]; Array[a, 25, 0] (* Amiram Eldar, May 05 2023 *)
PROG
(PARI) a(n)=binomial(2*n, n)/(n+1)*round(((1+sqrt(2))^(n+1)-(1-sqrt(2))^(n+1))/(2*sqrt(2)))
Product of Catalan and Jacobsthal numbers: a(n) = A000108(n)* A001045(n+1).
+10
4
1, 1, 6, 25, 154, 882, 5676, 36465, 244530, 1657942, 11471668, 80242890, 568080772, 4056976900, 29212908120, 211783889025, 1544811959970, 11328491394990, 83473572128100, 617702666484750, 4588654943721420, 34206312386929020, 255803818897858920, 1918528298674328250, 14427334095935095764
COMMENTS
More generally, given {S} such that: S(n) = b*S(n-1) + c*S(n-2), |b|>0, |c|>0, then Sum_{n>=0} S(n)*Catalan(n)*x^n = sqrt( (1-2*b*x - sqrt(1-4*b*x-16*c*x^2))/(2*b^2+8*c) )/x.
FORMULA
G.f.: sqrt( (1-2*x - sqrt(1-4*x-32*x^2))/2 )/(3*x).
G.f.: (1/x)*Series_Reversion(x-x^2 - 4*x^3*Sum_{n>=0} A000108(n)*3^n*x^(2*n) ).
G.f. satisfies: A(x) = G(x*A(x)) and G(x) = A(x/G(x)) where G(x) is the g.f. of A200376: G(x) = 1/sqrt(1-10*x^2 + x^4/(1-8*x^2)) + x/(1-9*x^2).
n*(n+1)*a(n) -2*n*(2*n-1)*a(n-1) -8*(2*n-1)*(2*n-3)*a(n-2)=0. - R. J. Mathar, Nov 17 2011
a(n) = binomial(2*n,n)/(n+1) * (2^(n+1) + (-1)^n)/3.
G.f.: A(x) = (sqrt(1 + 4*x) - sqrt(1 - 8*x))/(6*x).
A(x) = 1/sqrt(1 + 4*x)*c( 3*x/(1 + 4*x) ), where c(x) = (1 - sqrt(1- 4*x))/(2*x) is the g.f. of the Catalan numbers A000108. Cf. A151374.
In general, [x^n] ( 1/sqrt(1 + 4*x)*c( k*x/(1 + 4*x) ) ) = Catalan(n)*((k-1)^(n+1) + (-1)^(n+1))/k.
A(x) = 1/sqrt(1 - 8*x)*c( -3*x/(1 - 8*x) ). (End)
EXAMPLE
G.f.: A(x) = 1 + x + 2*3*x^2 + 5*5*x^3 + 14*11*x^4 + 42*21*x^5 + 132*43*x^6 + 429*85*x^7 + 1430*171*x^8 +...+ A000108(n)* A001045(n)*x^n +...
The g.f. of the Jacobsthal sequence A001045, F(x) = 1/(1-x-2*x^2), begins:
F(x) = 1 + x + 3*x^2 + 5*x^3 + 11*x^4 + 21*x^5 + 43*x^6 + 85*x^7 + 171*x^8 +...
The g.f. of A200376, where G(x) = A(x/G(x)), begins:
G(x) = 1 + x + 5*x^2 + 9*x^3 + 37*x^4 + 81*x^5 + 301*x^6 + 729*x^7 +...
in which the odd-indexed coefficients are powers of 9.
PROG
(PARI) {a(n)=binomial(2*n, n)/(n+1)*(2^(n+1)+(-1)^n)/3}
(PARI) {a(n)=polcoeff(sqrt((1-2*x - sqrt(1-4*x-32*x^2+O(x^(n+3))))/2)/(3*x), n)}
(PARI) {a(n)=polcoeff((1/x)*serreverse(x-x^2 - 4*x^3*sum(m=0, n\2, binomial(2*m, m)/(m+1)*3^m*x^(2*m))+x^3*O(x^n)), n)}
1, 3, 22, 195, 1946, 20790, 232716, 2693691, 31979090, 387243714, 4764470932, 59391201870, 748472730628, 9520446996300, 122067269204760, 1575965219205195, 20470515781159170, 267325017886787850
COMMENTS
Radius of convergence: r = (sqrt(17)-3)/16; A(r) = sqrt(2+6/sqrt(17)). Recurrence of A007482 is A007482(n) = 3* A007482(n-1) + 2* A007482(n-2). More generally, given {S} such that: S(n) = b*S(n-1) + c*S(n-2), |b|>0, |c|>0, then Sum_{n>=0} S(n)*Catalan(n)*x^n = sqrt( (1-2*b*x - sqrt(1-4*b*x-16*c*x^2))/(2*b^2+8*c) )/x.
FORMULA
G.f.: A(x) = sqrt((1-6*x - sqrt(1-12*x-32*x^2))/34 )/x.
n*(n+1)*a(n) -6*n*(2*n-1)*a(n-1) -8*(2*n-1)*(2*n-3)*a(n-2)=0. - R. J. Mathar, Nov 17 2018
EXAMPLE
Begins: {1*1, 3*1, 11*2, 39*5, 139*14, 495*42, 1763*132, 6279*429,...}.
PROG
(PARI) {a(n)=binomial(2*n, n)/(n+1)*((3+sqrt(17))^(n+1)-(3-sqrt(17))^(n+1))/2^(n+1)/sqrt(17)}
1, 1, 8, 35, 266, 1680, 12804, 93093, 726440, 5635058, 45063668, 362121760, 2955642508, 24284658100, 201428123040, 1680921310635, 14119413718770, 119205791509200, 1011387051005100, 8617021562542470, 73704123363739440, 632601537174078420
COMMENTS
More generally, given {S} such that: S(n) = b*S(n-1) + c*S(n-2), S(0)=1, |b|>0, |c|>0, then Sum_{n>=0} S(n)*Catalan(n)*x^n = sqrt( (1-2*b*x - sqrt(1-4*b*x-16*c*x^2))/(2*b^2+8*c) )/x.
FORMULA
G.f.: sqrt( (1-2*x - sqrt(1-4*x-48*x^2))/26 )/x.
G.f.: (1/x)*Series_Reversion( x*sqrt(1-12*x^2) - x^2 ).
G.f.: (1/x)*Series_Reversion( x-x^2 - 6*x^3*Sum_{n>=0} A000108(n)*3^n*x^(2*n) ).
G.f. satisfies: A(x) = sqrt(1 + 2*x*A(x)^2 + 13*x^2*A(x)^4).
Conjecture: n*(n+1)*a(n) -2*n*(2*n-1)*a(n-1) -12*(2*n-1)*(2*n-3)*a(n-2) = 0. - R. J. Mathar, Nov 17 2011
a(n) = ( ((1+sqrt(13))/2)^(n+1) - ((1-sqrt(13))/2)^(n+1) )/sqrt(13) * binomial(2*n+1,n)/(2*n+1). - Paul D. Hanna, Sep 25 2012
0 = +a(n)*(+110592*a(n+3) -9216*a(n+4) -7392*a(n+5) +858*a(n+6)) +a(n+1)*(+6912*a(n+3) -1968*a(n+4) -910*a(n+5) +154*a(n+6)) +a(n+2)*(-240*a(n+3) -2*a(n+4) +41*a(n+5) -4*a(n+6)) +a(n+3)*(+6*a(n+3) +5*a(n+4) +3*a(n+5) -a(n+6)) for all n in Z. - Michael Somos, Jul 28 2018
EXAMPLE
G.f.: A(x) = 1 + x + 2*4*x^2 + 5*7*x^3 + 14*19*x^4 + 42*40*x^5 + 132*97*x^6 + 429*217*x^7 + ... + A000108(n)* A006130(n)*x^n + ...
where the g.f. of A006130, F(x) = 1/(1-x-3*x^2), begins:
F(x) = 1 + x + 4*x^2 + 7*x^3 + 19*x^4 + 40*x^5 + 97*x^6 + 217*x^7 + ...
MATHEMATICA
CoefficientList[Series[Sqrt[(1 - 2*x - Sqrt[1 - 4*x - 48*x^2])/26]/x, {x, 0, 30}], x] (* G. C. Greubel, Jul 27 2018 *)
PROG
(PARI) {a(n)=binomial(2*n, n)/(n+1)*polcoeff(1/(1-x-3*x^2+x*O(x^n)), n)}
(PARI) {a(n)=polcoeff(sqrt((1-2*x - sqrt(1-4*x-48*x^2+x^3*O(x^n)))/26)/x, n)}
(PARI) {a(n)=polcoeff(serreverse(x*sqrt(1-12*x^2+x^2*O(x^n)) - x^2)/x, n)}
(PARI) {a(n)=polcoeff((1/x)*serreverse(x-x^2 - 6*x^3*sum(m=0, n\2, binomial(2*m, m)/(m+1)*3^m*x^(2*m))+x^3*O(x^n)), n)}
(Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R!(Sqrt((1-2*x - Sqrt(1-4*x-48*x^2))/26)/x)); // G. C. Greubel, Jul 27 2018
Product of Fibonacci and Motzkin numbers: a(n) = A000045(n+1)* A001006(n).
+10
2
1, 1, 4, 12, 45, 168, 663, 2667, 10982, 45925, 194732, 834912, 3614063, 15771795, 69316740, 306534564, 1362986799, 6089916936, 27328613142, 123118156260, 556626199974, 2524659817449, 11484671681511, 52384730922720, 239534402969925, 1097805759803893, 5042014405418968
COMMENTS
The g.f. for the Fibonacci numbers is 1/(1-x-x^2) and the g.f. M(x) for the Motzkin numbers satisfies: M(x) = 1 + x*M(x) + x^2*M(x)^2.
EXAMPLE
G.f.: A(x) = 1 + x + 4*x^2 + 12*x^3 + 45*x^4 + 168*x^5 + 663*x^6 +...
where A(x) = 1*1 + 1*1*x + 2*2*x^2 + 3*4*x^3 + 5*9*x^4 + 8*21*x^5 + 13*51*x^6 + 21*127*x^7 + 34*323*x^8 +...+ A000045(n+1)* A001006(n)*x^n +...
PROG
(PARI) { A001006(n)=polcoeff((1-x-sqrt((1-x)^2-4*x^2+x^3*O(x^n)))/(2*x^2), n)}
1, 2, 10, 48, 261, 1470, 8619, 51816, 318155, 1985630, 12561308, 80360280, 519013571, 3379514970, 22161470850, 146227235904, 970126550763, 6467496499590, 43304243215638, 291087137589552, 1963598081845335, 13288619577124122, 90195242361688863, 613843707553183800
COMMENTS
The g.f. for the Pell numbers is 1/(1-2*x-x^2) and the g.f. M(x) for the Motzkin numbers satisfy: M(x) = 1 + x*M(x) + x^2*M(x)^2.
EXAMPLE
G.f.: A(x) = 1 + 2*x + 10*x^2 + 48*x^3 + 261*x^4 + 1470*x^5 + 8619*x^6 +...
where A(x) = 1*1 + 2*1*x + 5*2*x^2 + 12*4*x^3 + 29*9*x^4 + 70*21*x^5 + 169*51*x^6 + 408*127*x^7 + 985*323*x^8 +...+ A000129(n+1)* A001006(n)*x^n +...
PROG
(PARI) { A001006(n)=polcoeff((1-x-sqrt((1-x)^2-4*x^2+x^3*O(x^n)))/(2*x^2), n)}
{ A000129(n)=polcoeff( x/(1-2*x-x^2+x*O(x^n)), n)}
Product of Fibonacci and Catalan numbers: a(n) = A000045(2*n+2)* A000108(n).
+10
2
1, 3, 16, 105, 770, 6048, 49764, 423423, 3695120, 32891430, 297473956, 2725789248, 25251200716, 236101791900, 2225241057600, 21118368117105, 201640796593290, 1935642349666080, 18670022226540300, 180851385211254450, 1758621701183524320, 17160853351737885660
COMMENTS
More generally, given {S} such that: S(n) = b*S(n-1) + c*S(n-2) with S(0)=1, |b|>0, |c|>0, then Sum_{n>=0} S(n)*Catalan(n)*x^n = sqrt( (1-2*b*x - sqrt(1-4*b*x-16*c*x^2))/(2*b^2+8*c) )/x.
FORMULA
G.f.: sqrt( (1-6*x - sqrt(1-12*x+16*x^2))/10 )/x.
a(n) = Fibonacci(2*n+2) * binomial(2*n,n)/(n+1).
a(n) = Fibonacci(n+1) * Lucas(n+1) * binomial(2*n,n)/(n+1), where Lucas(n+1) = 2*Fibonacci(n) + Fibonacci(n+1) = A000032(n+1).
n*(n+1)*a(n) -6*n*(2*n-1)*a(n-1) +4*(2*n-1)*(2*n-3)*a(n-2)=0. - R. J. Mathar, Nov 17 2018
Sum_{n>=0} a(n)/16^n = 4*sqrt(1-2/sqrt(5)). - Amiram Eldar, May 06 2023
EXAMPLE
G.f.: A(x) = 1 + 3*x + 16*x^2 + 105*x^3 + 770*x^4 + 6048*x^5 + 49764*x^6 +...
such that the coefficients equal the term-wise products:
A = [1*1, 3*1, 8*2, 21*5, 55*14, 144*42, 377*132, 987*429, 2584*1430, ...].
Related expansions.
A(x)^2 = 1 + 6*x + 41*x^2 + 306*x^3 + 2426*x^4 + 20076*x^5 + 171481*x^6 +...
A(x)^3 = 1 + 9*x + 75*x^2 + 630*x^3 + 5400*x^4 + 47223*x^5 + 420277*x^6 +...
Incidentally, note that (2*n+1) divides [x^n] A(x)^3:
A^3 = [1*1, 3*3, 5*15, 7*90, 9*600, 11*4293, 13*32329, 15*253110, ...].
MATHEMATICA
Table[Fibonacci[2*n+2]*Binomial[2*n, n]/(n+1), {n, 0, 25}] (* Vincenzo Librandi, Aug 28 2012 *)
PROG
(PARI) {a(n)=fibonacci(2*n+2)*binomial(2*n, n)/(n+1)}
(PARI) {a(n)=fibonacci(n+1)*(2*fibonacci(n)+fibonacci(n+1))*binomial(2*n, n)/(n+1)}
(PARI) {a(n)=polcoeff( sqrt( (1-6*x - sqrt(1-12*x+16*x^2 +x^3*O(x^n)))/10 )/x, n)}
for(n=0, 21, print1(a(n), ", "))
(Magma) [Fibonacci(2*n+2)*Binomial(2*n, n)/(n+1): n in [0..22]] // Vincenzo Librandi, Aug 28 2012
G.f. satisfies: A(x) = 1 + 2*x*A(x) + 5*x^2*A(x)^2.
+10
2
1, 2, 9, 38, 186, 932, 4889, 26238, 143966, 802652, 4536874, 25932348, 149650516, 870675912, 5101656889, 30078478318, 178309845686, 1062198928812, 6355149937934, 38172142221748, 230094601968876, 1391444403490552, 8439240940653834, 51323083138005388, 312896262064813036, 1911980839096481432
FORMULA
G.f.: (1-2*x - sqrt(1-4*x-16*x^2)) / (10*x^2).
a(n) = Sum_{k=0..n} Fibonacci(n-k+1)*Fibonacci(k+1) * C(2*(n-k),n-k)*C(2*k,k) / ((n-k+1)*(k+1)).
a(n) == 1 (mod 2) iff n = 2*(2^k - 1) for k>=0.
Given series bisections B0 and B1 such that A(x) = B0(x^2) + x*B1(x^2), then B1(x)/B0(x) = 2 + 10*x*B1(x), thus B1(x) = 2*B0(x)/(1 - 10*x*B0(x)).
a(n) ~ sqrt(5+2*sqrt(5)) * 2^(n+2) * (1+sqrt(5))^n / (5 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Nov 29 2014. Equivalently, a(n) ~ 5^(1/4) * 2^(2*n+2) * phi^(n + 3/2) / (5 * sqrt(Pi) * n^(3/2)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Dec 06 2021
Recurrence: (n+2)*a(n) = 2*(2*n+1)*a(n-1) + 16*(n-1)*a(n-2). - Vaclav Kotesovec, Nov 29 2014
EXAMPLE
G.f.: A(x) = 1 + 2*x + 9*x^2 + 38*x^3 + 186*x^4 + 932*x^5 + 4889*x^6 +...
where the square-root of the g.f. yields
sqrt(A(x)) = 1 + x + 4*x^2 + 15*x^3 + 70*x^4 + 336*x^5 + 1716*x^6 + 9009*x^7 + 48620*x^8 +...+ Fibonacci(n+1)* A000108(n)*x^n + +...
Related expansions.
A(x)^2 = 1 + 4*x + 22*x^2 + 112*x^3 + 605*x^4 + 3292*x^5 + 18298*x^6 +...
which obeys A(x) = 1 + 2*x*A(x) + 5*x^2*A(x)^2.
Given series bisections A(x) = B0(x^2) + x*B1(x^2),
B0(x) = 1 + 9*x + 186*x^2 + 4889*x^3 + 143966*x^4 + 4536874*x^5 +...
B1(x) = 2 + 38*x + 932*x^2 + 26238*x^3 + 802652*x^4 + 25932348*x^5 +...
then B1(x)/B0(x) = 2 + 10*x*B1(x):
B1(x)/B0(x) = 2 + 20*x + 380*x^2 + 9320*x^3 + 262380*x^4 + 8026520*x^5 +...
MATHEMATICA
CoefficientList[Series[(1-2*x-Sqrt[1-4*x-16*x^2]) / (10*x^2), {x, 0, 20}], x] (* Vaclav Kotesovec, Nov 29 2014 *)
PROG
(PARI) {a(n)=local(X=x+O(x^(n+3)), A); A = (1-2*x - sqrt(1-4*X-16*x^2)) / (10*x^2); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n) = sum(k=0, n, fibonacci(n-k+1)*fibonacci(k+1)*binomial(2*(n-k), n-k)*binomial(2*k, k)/((n-k+1)*(k+1)))}
for(n=0, 30, print1(a(n), ", "))
1, 3, 8, 35, 154, 756, 3828, 20163, 108680, 598026, 3342404, 18929092, 108374252, 626264700, 3647936160, 21396522915, 126262239570, 749087596620, 4465444206300, 26733390275130, 160663411399920, 968937572793060, 5862111195487560, 35569106862459300, 216395609659221564
FORMULA
G.f.: (1 - sqrt( (1-2*x + sqrt(1-4*x-16*x^2))/2 )) / x.
G.f. satisfies: A(x) = (2+5*x) - (1+4*x)*A(x) + x*(5+2*x)*A(x)^2 - 4*x^2*A(x)^3 + x^3*A(x)^4.
n*(n+1)*a(n) -2*n*(2n-1)*a(n-1) -4*(2*n-1)*(2*n-3)*a(n-2)=0. - R. J. Mathar, Sep 11 2012
Sum_{n>=0} a(n)/8^n = 8 - 2*sqrt(10). - Amiram Eldar, May 05 2023
EXAMPLE
G.f.: A(x) = 1 + 3*x + 8*x^2 + 35*x^3 + 154*x^4 + 756*x^5 + 3828*x^6 +...
such that the coefficients equal the term-wise products:
A = [1*1, 3*1, 4*2, 7*5, 11*14, 18*42, 29*132, 47*429, 76*1430, ...].
MATHEMATICA
a[n_] := LucasL[n+1] * CatalanNumber[n]; Array[a, 25, 0] (* Amiram Eldar, May 05 2023 *)
PROG
(PARI) {a(n)=(2*fibonacci(n)+fibonacci(n+1))*binomial(2*n, n)/(n+1)}
(PARI) {a(n)=polcoeff( (1 - sqrt( (1-2*x + sqrt(1-4*x-16*x^2 +x^2*O(x^n)))/2 )) / x, n)}
for(n=0, 25, print1(a(n), ", "))
Search completed in 0.008 seconds
|