Displaying 1-10 of 17 results found.
a(n) = lcm{1,2,...,n}/denominator of harmonic number H(n).
+10
24
1, 1, 1, 1, 1, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 15, 45, 45, 45, 15, 3, 3, 1, 1, 1, 1, 1, 1, 11, 11, 11, 11, 11, 11, 11, 11, 11, 77, 77, 7, 7, 7, 7, 7, 1, 1, 1, 1, 1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 9, 9, 9, 27, 27, 27, 9, 9, 9, 3, 3, 3, 3, 3, 33, 33, 33, 33, 11, 11, 11, 11, 11, 11, 11, 1, 1, 1
COMMENTS
a(n) is always odd.
Unsorted union: 1, 3, 15, 45, 11, 77, 7, 9, 27, 33, 25, 5, 55, 275, 13, 39, 17, 49, 931, 19, 319, 75, ..., . See A112810.
It is conjectured that every odd number occurs in this sequence (see A112822 for the first occurrence of each of them). - Jianing Song, Nov 28 2022
FORMULA
a(n) = gcd(lcm{1,2,...,n}, H(n)*lcm{1,2,...,n}).
EXAMPLE
a(6) = 60/20 = 3 because lcm{1,2,3,4,5,6}=60 and H(6)=49/20.
MAPLE
H:= proc(n) H(n):= 1/n +`if`(n=1, 0, H(n-1)) end:
L:= proc(n) L(n):= ilcm(n, `if`(n=1, 1, L(n-1))) end:
a:= n-> L(n)/denom(H(n)):
MATHEMATICA
f[n_] := LCM @@ Range[n]/Denominator[HarmonicNumber[n]]; Table[ f[n], {n, 90}] (* Robert G. Wilson v, Sep 15 2005 *)
PROG
(PARI) a(n) = lcm(vector(n, k, k))/denominator(sum(k=1, n, 1/k)); \\ Michel Marcus, Mar 07 2018
(Python)
from sympy import lcm, harmonic
def A110566(n): return lcm([k for k in range(1, n+1)])//harmonic(n).q # Chai Wah Wu, Mar 06 2021
Least number k such that lcm{1,2,...,k}/denominator of harmonic number H(k) = 2n-1.
+10
14
1, 6, 105, 44, 63, 33, 156, 20, 272, 343, 38272753, 11881, 100, 66, 822, 28861, 77
COMMENTS
First occurrence of 2n-1 in A110566.
Sequence continues: a(18)=?, 1332, 162, 2758521, 24649, 21, a(24)=?, 294, a(26)=?, 1166, 110, 126059, 201957, 3660, 37553041, 344929, 296341, a(35)=?, 25155299, a(37)=?, 500, 42
MATHEMATICA
a = h = 1; t = Table[0, {100}]; Do[a = LCM[a, n]; h = h + 1/n; b = a/Denominator[h]; If[b < 101 && t[[(b + 1)/2]] == 0, t[[(b + 1)/2]] = n], {n, 500000}]; t
PROG
(Python)
from fractions import Fraction
from sympy import lcm
k, l, h = 1, 1, Fraction(1, 1)
while l != h.denominator*(2*n-1):
k += 1
l = lcm(l, k)
h += Fraction(1, k)
CROSSREFS
Cf. A110566, A098464, A112813, A112814, A112815, A112816, A112817, A112818, A112819, A112820, A112821.
Numbers k such that lcm(1,2,3,...,k)/3 equals the denominator of the k-th harmonic number H(k).
+10
13
6, 7, 8, 18, 19, 25, 26, 54, 55, 56, 57, 58, 59, 60, 61, 62, 72, 73, 74, 75, 76, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231
MATHEMATICA
f[n_] := LCM @@ Range[n]/Denominator[ HarmonicNumber[n]]; Select[ Range[231], f[ # ] == 3 &]
PROG
(PARI) isok(n) = lcm(vector(n, i, i)) == 3*denominator(sum(i=1, n, 1/i)); \\ Michel Marcus, Mar 07 2018
Numbers k such that lcm(1,2,3,...,k)/5 equals the denominator of the k-th harmonic number H(k).
+10
12
105, 106, 107, 108, 109, 2625, 2626, 2627, 2628, 2629, 2630, 2631, 2632, 2633, 2634, 2635, 2636, 2637, 2638, 2639, 2640, 2641, 2642, 2643, 2644, 2645, 2646, 2647, 2648, 2649, 2650, 2651, 2652, 2653, 2654, 2655, 2656, 2657, 2658, 2659, 2660, 2661, 2662
MATHEMATICA
f[n_] := LCM @@ Range[n]/Denominator[ HarmonicNumber[n]]; Select[ Range[2662], f[ # ] == 5 &]
PROG
(PARI) isok(n) = lcm(vector(n, i, i)) == 5*denominator(sum(i=1, n, 1/i)); \\ Michel Marcus, Mar 07 2018
Numbers k such that lcm(1,2,3,...,k)/7 equals the denominator of the k-th harmonic number H(k).
+10
12
44, 45, 46, 47, 48, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 2209, 2210, 2211, 2212, 2213, 2214, 2215, 2216, 2217, 2218, 2219
MATHEMATICA
f[n_] := LCM @@ Range[n]/Denominator[ HarmonicNumber[n]]; Select[ Range[2219], f[ # ] == 7 &]
PROG
(PARI) isok(n) = lcm(vector(n, i, i)) == 7*denominator(sum(i=1, n, 1/i)); \\ Michel Marcus, Mar 07 2018
Numbers k such that lcm(1,2,3,...,k)/9 equals the denominator of the k-th harmonic number H(k).
+10
12
63, 64, 65, 69, 70, 71, 189, 190, 191, 192, 193, 194, 195, 196, 197, 207, 208, 209, 210, 211, 212, 213, 214, 215, 1701, 1702, 1703, 1704, 1705, 1706, 1707, 1708, 1709, 1710, 1711, 1712, 1713, 1714, 1715, 1716, 1717, 1718, 1719, 1720, 1721, 1722, 1723, 1724
MATHEMATICA
f[n_] := LCM @@ Range[n]/Denominator[ HarmonicNumber[n]]; Select[ Range[1724], f[ # ] == 9 &]
Numbers k such that lcm(1,2,3,...,k)/11 equals the denominator of the k-th harmonic number H(k).
+10
12
33, 34, 35, 36, 37, 38, 39, 40, 41, 81, 82, 83, 84, 85, 86, 87, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430
MATHEMATICA
f[n_] := LCM @@ Range[n]/Denominator[ HarmonicNumber[n]]; Select[ Range[430], f[ # ] == 11 &]
Select[Range[450], 1/11*LCM@@Range[#]==Denominator[HarmonicNumber[#]]&] (* Harvey P. Dale, Jan 06 2019 *)
Numbers k such that lcm(1,2,3,...,k)/13 equals the denominator of the k-th harmonic number H(k).
+10
12
156, 157, 158, 159, 160, 161, 27380, 27381, 27382, 27383, 27384, 27385, 27386, 27387, 27388, 27389, 27390, 27391, 27392, 27393, 27394, 27395, 27396, 27397, 27398, 27399, 27400, 27401, 27402, 27403, 27404, 27405, 27406, 27407, 27408
MATHEMATICA
a = h = 1; t = {}; Do[a = LCM[a, n]; h = h + 1/n; b = a/Denominator[h]; If[b == 13, AppendTo[t, n]], {n, 27408}]; t
With[{tk=Table[{LCM@@Range[k]/13, Denominator[HarmonicNumber[k]]}, {k, 28000}]}, Position[ tk, _?(#[[1]]==#[[2]]&), 1, Heads->False]]//Flatten (* Harvey P. Dale, Apr 02 2022 *)
Numbers k such that lcm(1,2,3,...,k)/15 equals the denominator of the k-th harmonic number H(k).
+10
12
20, 24, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 41889597, 41889598, 41889599, 41889600, 41889601, 41889602, 41889603, 41889604, 41889605, 41889606, 41889607
MATHEMATICA
a = h = 1; t = {}; Do[a = LCM[a, n]; h = h + 1/n; If[a/Denominator[h] == 15, AppendTo[t, n]], {n, 10^6}]; t
Numbers k such that lcm(1,2,3,...,k)/17 equals the denominator of the k-th harmonic number H(k).
+10
12
272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 79507, 79508, 79509, 79510, 79511, 79512, 79513, 79514, 79515, 79516, 79517, 79518, 79519, 79520, 79521, 79522, 79523, 79524, 79525, 79526, 79527, 79528
MATHEMATICA
a = h = 1; t = {}; Do[a = LCM[a, n]; h = h + 1/n; If[a/Denominator[h] == 17, AppendTo[t, n]], {n, 79528}]; t
Search completed in 0.011 seconds
|