[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a098464 -id:a098464
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = lcm{1,2,...,n}/denominator of harmonic number H(n).
+10
24
1, 1, 1, 1, 1, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 15, 45, 45, 45, 15, 3, 3, 1, 1, 1, 1, 1, 1, 11, 11, 11, 11, 11, 11, 11, 11, 11, 77, 77, 7, 7, 7, 7, 7, 1, 1, 1, 1, 1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 9, 9, 9, 27, 27, 27, 9, 9, 9, 3, 3, 3, 3, 3, 33, 33, 33, 33, 11, 11, 11, 11, 11, 11, 11, 1, 1, 1
OFFSET
1,6
COMMENTS
a(n) is always odd.
Unsorted union: 1, 3, 15, 45, 11, 77, 7, 9, 27, 33, 25, 5, 55, 275, 13, 39, 17, 49, 931, 19, 319, 75, ..., . See A112810.
It is conjectured that every odd number occurs in this sequence (see A112822 for the first occurrence of each of them). - Jianing Song, Nov 28 2022
LINKS
FORMULA
a(n) = A003418(n)/A002805(n) = A025529(n)/A001008(n).
From Franz Vrabec, Sep 21 2005: (Start)
a(n) = gcd(lcm{1,2,...,n}, H(n)*lcm{1,2,...,n}).
a(n) = gcd(A003418(n), A025529(n)). (End)
EXAMPLE
a(6) = 60/20 = 3 because lcm{1,2,3,4,5,6}=60 and H(6)=49/20.
MAPLE
H:= proc(n) H(n):= 1/n +`if`(n=1, 0, H(n-1)) end:
L:= proc(n) L(n):= ilcm(n, `if`(n=1, 1, L(n-1))) end:
a:= n-> L(n)/denom(H(n)):
seq(a(n), n=1..100); # Alois P. Heinz, Aug 30 2012
MATHEMATICA
f[n_] := LCM @@ Range[n]/Denominator[HarmonicNumber[n]]; Table[ f[n], {n, 90}] (* Robert G. Wilson v, Sep 15 2005 *)
PROG
(PARI) a(n) = lcm(vector(n, k, k))/denominator(sum(k=1, n, 1/k)); \\ Michel Marcus, Mar 07 2018
(Python)
from sympy import lcm, harmonic
def A110566(n): return lcm([k for k in range(1, n+1)])//harmonic(n).q # Chai Wah Wu, Mar 06 2021
KEYWORD
nonn
AUTHOR
Franz Vrabec, Sep 12 2005
EXTENSIONS
More terms from Robert G. Wilson v, Sep 15 2005
STATUS
approved
Least number k such that lcm{1,2,...,k}/denominator of harmonic number H(k) = 2n-1.
+10
14
1, 6, 105, 44, 63, 33, 156, 20, 272, 343, 38272753, 11881, 100, 66, 822, 28861, 77
OFFSET
1,2
COMMENTS
First occurrence of 2n-1 in A110566.
Sequence continues: a(18)=?, 1332, 162, 2758521, 24649, 21, a(24)=?, 294, a(26)=?, 1166, 110, 126059, 201957, 3660, 37553041, 344929, 296341, a(35)=?, 25155299, a(37)=?, 500, 42
MATHEMATICA
a = h = 1; t = Table[0, {100}]; Do[a = LCM[a, n]; h = h + 1/n; b = a/Denominator[h]; If[b < 101 && t[[(b + 1)/2]] == 0, t[[(b + 1)/2]] = n], {n, 500000}]; t
PROG
(Python)
from fractions import Fraction
from sympy import lcm
def A112822(n):
k, l, h = 1, 1, Fraction(1, 1)
while l != h.denominator*(2*n-1):
k += 1
l = lcm(l, k)
h += Fraction(1, k)
return k # Chai Wah Wu, Mar 06 2021
KEYWORD
nonn,more
AUTHOR
Robert G. Wilson v, Sep 15 2005
EXTENSIONS
a(11), a(32) from Max Alekseyev, Nov 29 2013
a(33)-a(34) from Chai Wah Wu, Mar 06 2021
a(36), a(38), a(39) from Chai Wah Wu, Mar 12 2021
STATUS
approved
Numbers k such that lcm(1,2,3,...,k)/3 equals the denominator of the k-th harmonic number H(k).
+10
13
6, 7, 8, 18, 19, 25, 26, 54, 55, 56, 57, 58, 59, 60, 61, 62, 72, 73, 74, 75, 76, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231
OFFSET
1,1
COMMENTS
When 3 occurs in A110566.
LINKS
MATHEMATICA
f[n_] := LCM @@ Range[n]/Denominator[ HarmonicNumber[n]]; Select[ Range[231], f[ # ] == 3 &]
PROG
(PARI) isok(n) = lcm(vector(n, i, i)) == 3*denominator(sum(i=1, n, 1/i)); \\ Michel Marcus, Mar 07 2018
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Sep 17 2005
STATUS
approved
Numbers k such that lcm(1,2,3,...,k)/5 equals the denominator of the k-th harmonic number H(k).
+10
12
105, 106, 107, 108, 109, 2625, 2626, 2627, 2628, 2629, 2630, 2631, 2632, 2633, 2634, 2635, 2636, 2637, 2638, 2639, 2640, 2641, 2642, 2643, 2644, 2645, 2646, 2647, 2648, 2649, 2650, 2651, 2652, 2653, 2654, 2655, 2656, 2657, 2658, 2659, 2660, 2661, 2662
OFFSET
1,1
COMMENTS
When 5 occurs in A110566.
LINKS
MATHEMATICA
f[n_] := LCM @@ Range[n]/Denominator[ HarmonicNumber[n]]; Select[ Range[2662], f[ # ] == 5 &]
PROG
(PARI) isok(n) = lcm(vector(n, i, i)) == 5*denominator(sum(i=1, n, 1/i)); \\ Michel Marcus, Mar 07 2018
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Sep 17 2005
STATUS
approved
Numbers k such that lcm(1,2,3,...,k)/7 equals the denominator of the k-th harmonic number H(k).
+10
12
44, 45, 46, 47, 48, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 2209, 2210, 2211, 2212, 2213, 2214, 2215, 2216, 2217, 2218, 2219
OFFSET
1,1
COMMENTS
When 7 occurs in A110566.
LINKS
MATHEMATICA
f[n_] := LCM @@ Range[n]/Denominator[ HarmonicNumber[n]]; Select[ Range[2219], f[ # ] == 7 &]
PROG
(PARI) isok(n) = lcm(vector(n, i, i)) == 7*denominator(sum(i=1, n, 1/i)); \\ Michel Marcus, Mar 07 2018
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Sep 17 2005
STATUS
approved
Numbers k such that lcm(1,2,3,...,k)/9 equals the denominator of the k-th harmonic number H(k).
+10
12
63, 64, 65, 69, 70, 71, 189, 190, 191, 192, 193, 194, 195, 196, 197, 207, 208, 209, 210, 211, 212, 213, 214, 215, 1701, 1702, 1703, 1704, 1705, 1706, 1707, 1708, 1709, 1710, 1711, 1712, 1713, 1714, 1715, 1716, 1717, 1718, 1719, 1720, 1721, 1722, 1723, 1724
OFFSET
1,1
COMMENTS
When 9 occurs in A110566.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1483 from Jinyuan Wang)
MATHEMATICA
f[n_] := LCM @@ Range[n]/Denominator[ HarmonicNumber[n]]; Select[ Range[1724], f[ # ] == 9 &]
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Sep 17 2005
EXTENSIONS
Definition corrected by Jinyuan Wang, May 03 2020
STATUS
approved
Numbers k such that lcm(1,2,3,...,k)/11 equals the denominator of the k-th harmonic number H(k).
+10
12
33, 34, 35, 36, 37, 38, 39, 40, 41, 81, 82, 83, 84, 85, 86, 87, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430
OFFSET
1,1
COMMENTS
When 11 occurs in A110566.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Jinyuan Wang)
MATHEMATICA
f[n_] := LCM @@ Range[n]/Denominator[ HarmonicNumber[n]]; Select[ Range[430], f[ # ] == 11 &]
Select[Range[450], 1/11*LCM@@Range[#]==Denominator[HarmonicNumber[#]]&] (* Harvey P. Dale, Jan 06 2019 *)
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Sep 17 2005
EXTENSIONS
Name (definition) corrected by Harvey P. Dale, Jan 06 2019
STATUS
approved
Numbers k such that lcm(1,2,3,...,k)/13 equals the denominator of the k-th harmonic number H(k).
+10
12
156, 157, 158, 159, 160, 161, 27380, 27381, 27382, 27383, 27384, 27385, 27386, 27387, 27388, 27389, 27390, 27391, 27392, 27393, 27394, 27395, 27396, 27397, 27398, 27399, 27400, 27401, 27402, 27403, 27404, 27405, 27406, 27407, 27408
OFFSET
1,1
COMMENTS
When 13 occurs in A110566.
LINKS
MATHEMATICA
a = h = 1; t = {}; Do[a = LCM[a, n]; h = h + 1/n; b = a/Denominator[h]; If[b == 13, AppendTo[t, n]], {n, 27408}]; t
With[{tk=Table[{LCM@@Range[k]/13, Denominator[HarmonicNumber[k]]}, {k, 28000}]}, Position[ tk, _?(#[[1]]==#[[2]]&), 1, Heads->False]]//Flatten (* Harvey P. Dale, Apr 02 2022 *)
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Sep 17 2005
EXTENSIONS
Definition corrected by Jinyuan Wang, May 03 2020
STATUS
approved
Numbers k such that lcm(1,2,3,...,k)/15 equals the denominator of the k-th harmonic number H(k).
+10
12
20, 24, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 41889597, 41889598, 41889599, 41889600, 41889601, 41889602, 41889603, 41889604, 41889605, 41889606, 41889607
OFFSET
1,1
COMMENTS
When 15 occurs in A110566.
MATHEMATICA
a = h = 1; t = {}; Do[a = LCM[a, n]; h = h + 1/n; If[a/Denominator[h] == 15, AppendTo[t, n]], {n, 10^6}]; t
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Sep 17 2005
EXTENSIONS
Definition corrected by Jinyuan Wang, May 03 2020
More terms from Chai Wah Wu, Mar 18 2021
STATUS
approved
Numbers k such that lcm(1,2,3,...,k)/17 equals the denominator of the k-th harmonic number H(k).
+10
12
272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 79507, 79508, 79509, 79510, 79511, 79512, 79513, 79514, 79515, 79516, 79517, 79518, 79519, 79520, 79521, 79522, 79523, 79524, 79525, 79526, 79527, 79528
OFFSET
1,1
COMMENTS
When 17 occurs in A110566.
LINKS
Chai Wah Wu, Table of n, a(n) for n = 1..10000 (n = 1..3106 from Jinyuan Wang)
MATHEMATICA
a = h = 1; t = {}; Do[a = LCM[a, n]; h = h + 1/n; If[a/Denominator[h] == 17, AppendTo[t, n]], {n, 79528}]; t
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Sep 17 2005
EXTENSIONS
Definition corrected by Jinyuan Wang, May 03 2020
STATUS
approved

Search completed in 0.011 seconds