[go: up one dir, main page]

login
Search: a098293 -id:a098293
     Sort: relevance | references | number | modified | created      Format: long | short | data
Powers of 3 alternating with powers of 2.
+10
1
1, 1, 3, 2, 9, 4, 27, 8, 81, 16, 243, 32, 729, 64, 2187, 128, 6561, 256, 19683, 512, 59049, 1024, 177147, 2048, 531441, 4096, 1594323, 8192, 4782969, 16384, 14348907, 32768, 43046721, 65536, 129140163, 131072, 387420489, 262144, 1162261467
OFFSET
0,3
COMMENTS
a(n)*A098293(n) = A000400(floor(n/2)).
FORMULA
a(n) = ((5+(-1)^n)/2)^((2*n-1+(-1)^n)/4).
a(n) = 5*a(n-2)-6*a(n-4). - Colin Barker, May 30 2015
G.f.: -(3*x^3+2*x^2-x-1) / ((2*x^2-1)*(3*x^2-1)). - Colin Barker, May 30 2015
MAPLE
seq(op([3^n, 2^n]), n=0..20); # Muniru A Asiru, Jul 16 2018
MATHEMATICA
Flatten[Table[{3^n, 2^n}, {n, 0, 25}]] (* Vincenzo Librandi, Jul 17 2018 *)
PROG
(PARI) Vec(-(3*x^3+2*x^2-x-1)/((2*x^2-1)*(3*x^2-1)) + O(x^100)) \\ Colin Barker, May 30 2015
(GAP) Flat(List([0..20], n->[3^n, 2^n])); # Muniru A Asiru, Jul 16 2018
(Magma) &cat[[3^n, 2^n]: n in [0..35]]; // Vincenzo Librandi, Jul 17 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Luce ETIENNE, May 30 2015
STATUS
approved
Powers of 3 alternating with powers of 4.
+10
1
1, 1, 3, 4, 9, 16, 27, 64, 81, 256, 243, 1024, 729, 4096, 2187, 16384, 6561, 65536, 19683, 262144, 59049, 1048576, 177147, 4194304, 531441, 16777216, 1594323, 67108864, 4782969, 268435456, 14348907, 1073741824, 43046721, 4294967296, 129140163, 17179869184
OFFSET
0,3
FORMULA
a(n) = 7*a(n-2) - 12*a(n-4) for n >= 4.
From Stefano Spezia, Sep 06 2024: (Start)
G.f.: (1 + x - 4*x^2 - 3*x^3)/((1 - 2*x)*(1 + 2*x)*(1 - 3*x^2)).
a(n) = (4*3^(n/2)*A059841(n) - (-2)^n + 2^n)/4.
E.g.f.: cosh(sqrt(3)*x) + cosh(x)*sinh(x). (End)
MATHEMATICA
seq[len_] := Module[{m = Ceiling[len/2] - 1}, Riffle @@ Map[#^Range[0, m] &, {3, 4}]]; seq[36] (* Amiram Eldar, Sep 05 2024 *)
PROG
(Python)
def A375966(n): return 1<<(n^1) if n&1 else 3**(n>>1) # Chai Wah Wu, Sep 24 2024
CROSSREFS
Cf. A000244 and A000302 interleaved.
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Sep 04 2024
STATUS
approved
Contains exactly once every triple i,j,k such that i>j>k>0.
+10
0
3, 2, 1, 4, 2, 1, 5, 2, 1, 4, 3, 1, 6, 2, 1, 5, 3, 1, 4, 3, 2, 7, 2, 1, 6, 3, 1, 5, 4, 1, 5, 3, 2, 8, 2, 1, 7, 3, 1, 6, 4, 1, 6, 3, 2, 5, 4, 2, 9, 2, 1, 8, 3, 1, 7, 4, 1, 6, 5, 1, 7, 3, 2, 6, 4, 2, 5, 4, 3, 10, 2, 1, 9, 3, 1, 8, 4, 1, 7, 5, 1, 8, 3, 2, 7, 4, 2, 6, 5, 2, 6, 4, 3, 11, 2, 1, 10, 3, 1, 9, 4, 1, 8, 5
OFFSET
1,1
FORMULA
Obtained by reversing triples in A097293.
CROSSREFS
Cf. A098293.
KEYWORD
nonn
AUTHOR
Clark Kimberling, Aug 05 2004
STATUS
approved

Search completed in 0.007 seconds