[go: up one dir, main page]

login
Search: a097941 -id:a097941
     Sort: relevance | references | number | modified | created      Format: long | short | data
Triangle T(n,k) read by rows: T(n,k) is the number of compositions of n with exactly k occurrences of the smallest part, n>=0, 0<=k<=n.
+10
18
1, 0, 1, 0, 1, 1, 0, 3, 0, 1, 0, 3, 4, 0, 1, 0, 8, 3, 4, 0, 1, 0, 11, 10, 5, 5, 0, 1, 0, 20, 18, 14, 5, 6, 0, 1, 0, 34, 35, 24, 21, 6, 7, 0, 1, 0, 59, 60, 59, 35, 27, 7, 8, 0, 1, 0, 96, 121, 108, 85, 49, 35, 8, 9, 0, 1, 0, 167, 217, 213, 175, 125, 63, 44, 9, 10, 0, 1, 0, 282, 391, 419, 366, 258, 176, 80, 54, 10, 11, 0, 1
OFFSET
0,8
COMMENTS
Conjecture: Generally, for k > 0 is a(n) ~ n^k * ((1+sqrt(5))/2)^(n-2*k-1) / (5^((k+1)/2) * k!). Holds for all k<=10. - Vaclav Kotesovec, May 02 2014
G.f.: 1 + Sum_{i>0} (-y*(x^i)*(x - 1)^2)/( (x^(i+1) + x - 1)*((x^i)*(x*(y - 1) - y) - x + 1) ). - John Tyler Rascoe, Oct 15 2024
Sum_{k=0..n} k * T(n,k) = A097941(n). - Alois P. Heinz, Oct 15 2024
LINKS
Joerg Arndt and Alois P. Heinz, Rows n = 0..140, flattened
EXAMPLE
Triangle starts:
00: 1;
01: 0, 1;
02: 0, 1, 1;
03: 0, 3, 0, 1;
04: 0, 3, 4, 0, 1;
05: 0, 8, 3, 4, 0, 1;
06: 0, 11, 10, 5, 5, 0, 1;
07: 0, 20, 18, 14, 5, 6, 0, 1;
08: 0, 34, 35, 24, 21, 6, 7, 0, 1;
09: 0, 59, 60, 59, 35, 27, 7, 8, 0, 1;
10: 0, 96, 121, 108, 85, 49, 35, 8, 9, 0, 1;
11: 0, 167, 217, 213, 175, 125, 63, 44, 9, 10, 0, 1;
12: 0, 282, 391, 419, 366, 258, 176, 80, 54, 10, 11, 0, 1;
13: 0, 475, 709, 808, 730, 579, 371, 236, 99, 65, 11, 12, 0, 1;
14: 0, 800, 1281, 1522, 1481, 1202, 861, 513, 309, 120, 77, 12, 13, 0, 1;
15: 0, 1352, 2283, 2872, 2925, 2512, 1862, 1238, 684, 395, 143, 90, 13, 14, 0, 1;
...
MAPLE
b:= proc(n, s) option remember; `if`(n=0, 1,
`if`(n<s, 0, expand(add(b(n-j, s)*x, j=s..n))))
end:
T:= (n, k)->`if`(k=0, `if`(n=0, 1, 0), add((p->add(coeff(p, x, i)*
binomial(i+k, k), i=0..degree(p)))(b(n-j*k, j+1)), j=1..n/k)):
seq(seq(T(n, k), k=0..n), n=0..15);
MATHEMATICA
b[n_, s_] := b[n, s] = If[n == 0, 1, If[n<s, 0, Expand[Sum[b[n-j, s]*x, {j, s, n}]]]]; T[n_, k_] := If[k == 0, If[n == 0, 1, 0], Sum[Function[{p}, Sum[Coefficient[p, x, i]*Binomial[i+k, k], {i, 0, Exponent[p, x]}]][b[n-j*k, j+1]], {j, 1, n/k}]]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 15}] // Flatten (* Jean-François Alcover, Nov 07 2014, translated from Maple *)
PROG
(PARI)
T_xy(max_row) = {my(N=max_row+1, x='x+O('x^N), h=1+sum(i=1, N, (-y*(x^i)*(x-1)^2)/((x^(i+1)+x-1)*((x^i)*(x*(y-1)-y)-x+1)))); for(i=0, N-1, print(Vecrev(polcoef(h, i))))}
T_xy(15) \\ John Tyler Rascoe, Oct 15 2024
CROSSREFS
Cf. A238341 (the same for largest part).
Row sums are A011782.
T(2*n,n) gives A232665(n).
Cf. A097941.
KEYWORD
nonn,tabl
AUTHOR
Joerg Arndt and Alois P. Heinz, Feb 25 2014
STATUS
approved
Total number of largest parts in all compositions of n.
+10
12
1, 3, 6, 12, 23, 46, 91, 183, 367, 737, 1478, 2962, 5928, 11858, 23707, 47384, 94698, 189260, 378277, 756160, 1511730, 3022672, 6044472, 12088395, 24177600, 48359695, 96732370, 193495606, 387057584, 774248858, 1548754115, 3097980230, 6196797193, 12395022288
OFFSET
1,2
COMMENTS
Also number of compositions of n+1 with unique largest part. - Vladeta Jovovic, Apr 03 2005
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..1000 (first 200 terms from Vincenzo Librandi)
FORMULA
G.f.: (1-x)^2 * Sum_{k>=1} x^k/(1-2*x+x^(k+1))^2.
a(n) ~ 2^(n-1)/log(2). - Vaclav Kotesovec, Apr 30 2014
MATHEMATICA
nn=32; Drop[CoefficientList[Series[Sum[x^j/(1 - (x - x^(j + 1))/(1 - x))^2, {j, 1, nn}], {x, 0, nn}], x], 1] (* Geoffrey Critzer, Mar 31 2014 *)
b[n_, p_, i_] := b[n, p, i] = If[n == 0, p!, If[i<1, 0, Sum[b[n-i*j, p+j, i-1]/j!, {j, 0, n/i}]]]; a[n_, k_] := Sum[b[n-i*k, k, i-1]/k!, {i, 1, n/k}]; a[0, 0] = 1; a[_, 0] = 0; a[n_] := a[n+1, 1]; Table[a[n], {n, 1, 32}] (* Jean-François Alcover, Feb 10 2015, after A238341 *)
PROG
(PARI) { b(t)=local(r); sum(k=1, t, forstep(s=t%k, t-k, k, u=(t-k-s)\k; r+=binomial(-2, s)*(-2)^(s-u)*binomial(s, u))); r }
{ a(n)=b(n)-2*b(n-1)+b(n-2) } \\ Max Alekseyev, Apr 16 2005
CROSSREFS
Column k=1 of A238341.
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Sep 07 2004
EXTENSIONS
More terms from Max Alekseyev, Apr 16 2005
STATUS
approved
Sum of the smallest parts of all compositions of n.
+10
10
1, 3, 6, 12, 22, 42, 79, 151, 291, 566, 1106, 2175, 4293, 8499, 16864, 33523, 66727, 132958, 265137, 529050, 1056169, 2109282, 4213710, 8419697, 16827079, 33634489, 67237513, 134424624, 268768414, 537407062, 1074605619, 2148875961, 4297212424, 8593556211, 17185713097, 34369170909
OFFSET
1,2
COMMENTS
Sums of the antidiagonals of A099238. - Paul Barry, Oct 08 2004
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..1000 (correcting an earlier b-file from Vincenzo Librandi)
FORMULA
G.f.: Sum_{k>=1} x^k/(1-x-x^k).
a(n) = Sum_{r=0..n-1} Sum_{k=0..floor((n-r-1)/(r+1))} binomial(n-r(k+1)-1, k). - Paul Barry, Oct 08 2004
G.f.: (1-x)^2 * Sum_{k>=1} k*x^k/((x^k+x-1)*(x^(k+1)+x-1)). - Vladeta Jovovic, Apr 23 2006
G.f.: Sum_{k>=1} x^k/((1-x)^k*(1-x^k)). - Vladeta Jovovic, Mar 02 2008
G.f.: Sum_{n>=1} a*x^n/(1-a*x^n) (generalized Lambert series) where a=1/(1-x). - Joerg Arndt, Jan 30 2011
G.f.: Sum_{n>=1} (a*x)^n/(1-x^n) where a=1/(1-x). - Joerg Arndt, Jan 01 2013
G.f.: Sum_{n>=1} x^n * Sum_{d|n} 1/(1-x)^d. - Paul D. Hanna, Jul 18 2013
a(n) ~ 2^(n-1). - Vaclav Kotesovec, Oct 28 2014
MAPLE
A097939:=n->add(add(binomial(n-r*(k+1)-1, k), k=0..floor((n-r-1)/(r+1))), r=0..n-1): seq(A097939(n), n=1..50); # Wesley Ivan Hurt, Dec 03 2016
# second Maple Program:
b:= proc(n, m) option remember; `if`(n=0, m,
add(b(n-j, min(j, m)), j=1..n))
end:
a:= n-> b(n$2):
seq(a(n), n=1..40); # Alois P. Heinz, Jul 26 2020
MATHEMATICA
Drop[ CoefficientList[ Series[ Sum[x^k/(1 - x - x^k), {k, 50}], {x, 0, 35}], x], 1] (* Robert G. Wilson v, Sep 08 2004 *)
PROG
(PARI)
N=66; x='x+O('x^N);
gf= sum(k=1, N, x^k/(1-x-x^k) );
Vec(gf)
/* Joerg Arndt, Jan 01 2013 */
(PARI) {a(n)=polcoeff(sum(m=1, n, x^m*sumdiv(m, d, 1/(1-x +x*O(x^n))^d) ), n)}
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Sep 05 2004
EXTENSIONS
More terms from Robert G. Wilson v, Sep 08 2004
STATUS
approved
Expansion of Sum_{k>=1} mu(k)^2*x^k*(1 - x)^2/(1 - 2*x)^2, where mu() is the Moebius function (A008683).
+10
2
1, 3, 8, 19, 46, 107, 244, 547, 1213, 2665, 5807, 12567, 27042, 57899, 123428, 262115, 554750, 1170538, 2463154, 5170462, 10829234, 22635087, 47223412, 98353299, 204519549, 424665001, 880581806, 1823667221, 3772341661, 7794697759, 16089424392, 33178906531, 68357928558
OFFSET
1,2
COMMENTS
Total number of squarefree parts in all compositions (ordered partitions) of n.
FORMULA
G.f.: Sum_{k>=1} mu(k)^2*x^k*(1 - x)^2/(1 - 2*x)^2.
EXAMPLE
a(4) = 19 because we have [4], [3, 1], [2, 2], [2, 1, 1], [1, 3], [1, 2, 1], [1, 1, 2], [1, 1, 1, 1] and 0 + 2 + 2 + 3 + 2 + 3 + 3 + 4 = 19.
MAPLE
a:= proc(n) option remember; add(`if`(numtheory[
issqrfree](j), ceil(2^(n-j-1)), 0)+a(n-j), j=1..n)
end:
seq(a(n), n=1..33); # Alois P. Heinz, Aug 07 2019
MATHEMATICA
nmax = 33; Rest[CoefficientList[Series[Sum[MoebiusMu[k]^2 x^k (1 - x)^2/(1 - 2 x)^2, {k, 1, nmax}], {x, 0, nmax}], x]]
PROG
(PARI) x='x+O('x^34); Vec(sum(k=1, 34, moebius(k) ^2*x^k*(1 - x)^2/(1 - 2*x)^2)) \\ Indranil Ghosh, Apr 06 2017
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Apr 06 2017
STATUS
approved
Expansion of Sum_{p prime, k>=1} x^(p^k)*(1 - x)^2/(1 - 2*x)^2.
+10
2
0, 1, 3, 8, 20, 47, 110, 251, 564, 1251, 2750, 5994, 12978, 27934, 59825, 127565, 270959, 573575, 1210466, 2547562, 5348385, 11203292, 23419629, 48865346, 101782870, 211670094, 439548898, 911515214, 1887865266, 3905400206, 8070139762, 16658958223, 34355273843
OFFSET
1,3
COMMENTS
Total number of prime power parts (1 excluded) in all compositions (ordered partitions) of n.
FORMULA
G.f.: Sum_{p prime, k>=1} x^(p^k)*(1 - x)^2/(1 - 2*x)^2.
EXAMPLE
a(5) = 20 because we have [5], [4, 1], [3, 2], [3, 1, 1], [2, 3], [2, 2, 1], [2, 1, 2], [2, 1, 1, 1], [1, 4], [1, 3, 1], [1, 2, 2], [1, 2, 1, 1], [1, 1, 3], [1, 1, 2, 1], [1, 1, 1, 2], [1, 1, 1, 1, 1] and 1 + 1 + 2 + 1 + 2 + 2 + 2 + 1 + 1 + 1 + 2 + 1 + 1 + 1 + 1 + 0 = 20.
MAPLE
b:= proc(n) option remember; nops(ifactors(n)[2])=1 end:
a:= proc(n) option remember; `if`(n=0, 0, add(a(n-j)+
`if`(b(j), ceil(2^(n-j-1)), 0), j=1..n))
end:
seq(a(n), n=1..33); # Alois P. Heinz, Aug 07 2019
MATHEMATICA
nmax = 33; Rest[CoefficientList[Series[Sum[Floor[1/PrimeNu[k]] x^k (1 - x)^2/(1 - 2 x)^2, {k, 2, nmax}], {x, 0, nmax}], x]]
PROG
(PARI) x='x+O('x^34); concat([0], Vec(sum(k=2, 34, (1\omega(k))*x^k*(1 - x)^2/(1 - 2*x)^2))) \\ Indranil Ghosh, Apr 06 2017
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Apr 06 2017
STATUS
approved
Triangle T(n,k) read by rows: the sum of all smallest parts among all k-compositions of n.
+10
2
1, 2, 2, 3, 2, 3, 4, 6, 6, 4, 5, 6, 9, 12, 5, 6, 12, 18, 24, 20, 6, 7, 12, 27, 40, 50, 30, 7, 8, 20, 36, 68, 100, 90, 42, 8, 9, 20, 54, 108, 175, 210, 147, 56, 9, 10, 30, 72, 160, 290, 420, 392, 224, 72, 10, 11, 30, 90, 224, 460, 756, 882, 672, 324, 90, 11, 12, 42, 120, 312, 700, 1272, 1764, 1680, 1080, 450, 110
OFFSET
1,2
LINKS
Knopfmacher, Arnold; Munagi, Augustine O. Smallest parts in compositions, Kotsireas, Ilias S. (ed.) et al., Advances in combinatorics. 3rd Waterloo workshop on computer algebra (WWCA, W80) 2011, Waterloo, Canada, May 26-29, 2011. Berlin: Springer. 197-207 (2013).
FORMULA
T(n,k) = k*sum_{j=1..floor(n/k)} binomial(n-(j-1)*k-2, k-2).
EXAMPLE
The triangle starts in row n=1 with columns 1<=k<=n as:
1;
2, 2;
3, 2, 3;
4, 6, 6, 4;
5, 6, 9, 12, 5;
6, 12, 18, 24, 20, 6;
7, 12, 27, 40, 50, 30, 7;
8, 20, 36, 68,100, 90, 42, 8;
9, 20, 54,108,175,210,147, 56, 9;
10, 30, 72,160,290,420,392,224, 72, 10;
...
MAPLE
A308630 := proc(n, k)
add(j*binomial(n-(j-1)*k-2, k-2), j=1..floor(n/k)) ;
%*k ;
end proc:
CROSSREFS
Cf. A097941 (number of smallest parts), A002378 (k=2), A144677 (column k=3 divided by 3), A097940 (row sums).
KEYWORD
nonn,easy,tabl
AUTHOR
R. J. Mathar, Jun 12 2019
STATUS
approved

Search completed in 0.011 seconds