[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a097607 -id:a097607
     Sort: relevance | references | number | modified | created      Format: long | short | data
Sum of the altitudes of the leftmost valleys of all Dyck paths of semilength n (if path has no valley, then this altitude is taken to be 0).
+10
5
0, 0, 0, 1, 6, 26, 101, 376, 1377, 5017, 18277, 66727, 244377, 898129, 3312554, 12260129, 45526754, 169588754, 633580634, 2373550184, 8914719134, 33562602134, 126640791884, 478848661898, 1814142235028, 6885560250148
OFFSET
0,5
COMMENTS
The positive terms form the partial sums of A000344.
LINKS
FORMULA
a(n) = Sum_{k>=0} k*A097607(n,k).
G.f.: z^3*C^5/(1-z), where C=(1-sqrt(1-4*z))/(2*z) is the generating function of the Catalan numbers (A000108).
Conjecture: (n+2)*a(n) -4*(2*n+1)*a(n-1) +2*(10*n-9)*a(n-2) +17*(2-n)*a(n-3) +2*(2*n-7)*a(n-4)=0. - R. J. Mathar, Jul 24 2012
a(n) ~ 5*4^n/(3*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 21 2014
a(n) = 5*Sum_{k=2..n-1}(binomial(2*k,k-2)/(k+3)). - Vladimir Kruchinin, Mar 15 2016
EXAMPLE
a(4)=6 because the Dyck paths of semilength 4 with leftmost valley at a positive altitude are UUDUDDUD, UUDUDUDD, UUDUUDDD, UUUDDUDD and UUUDUDDD, where U=(1,1) and D=(1,-1); these altitudes are 1, 1, 1, 1 and 2, respectively.
MAPLE
C:=((1-sqrt(1-4*z))*1/2)/z: G:=z^3*C^5/(1-z): Gser:=series(G, z=0, 32): seq(coeff(Gser, z, n), n=0..27);
MATHEMATICA
CoefficientList[Series[x^3 ((1 - (1 - 4 x)^(1/2))/(2 x))^5/(1 - x), {x, 0, 40}], x] (* Vaclav Kotesovec, Mar 21 2014 *)
PROG
(Maxima)
a(n):=5*sum(binomial(2*k, k-2)/(k+3), k, 2, n-1); /* Vladimir Kruchinin, Mar 15 2016 */
(Python)
from functools import cache
@cache
def B(n, k):
if n <= 0 or k <= 0: return 0
if n == k: return 1
return B(n - 1, k) + B(n, k - 1)
def A143955(k):
return B(k + 3, k - 2)
print([A143955(n) for n in range(26)]) # Peter Luschny, May 15 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Oct 14 2008
STATUS
approved

Search completed in 0.004 seconds