[go: up one dir, main page]

login
Search: a096156 -id:a096156
     Sort: relevance | references | number | modified | created      Format: long | short | data
Numbers which are the product of a prime and the square of a different prime (p^2 * q).
+10
83
12, 18, 20, 28, 44, 45, 50, 52, 63, 68, 75, 76, 92, 98, 99, 116, 117, 124, 147, 148, 153, 164, 171, 172, 175, 188, 207, 212, 236, 242, 244, 245, 261, 268, 275, 279, 284, 292, 316, 325, 332, 333, 338, 356, 363, 369, 387, 388, 404, 412, 423, 425, 428, 436, 452
OFFSET
1,1
COMMENTS
A178254(a(n)) = 4; union of A095990 and A096156. - Reinhard Zumkeller, May 24 2010
Numbers with prime signature (2,1) = union of numbers with ordered prime signature (1,2) and numbers with ordered prime signature (2,1) (restating second part of above comment). - Daniel Forgues, Feb 05 2011
A056595(a(n)) = 4. - Reinhard Zumkeller, Aug 15 2011
For k>1, Sum_{n>=1} 1/a(n)^k = P(k) * P(2*k) - P(3*k), where P is the prime zeta function. - Enrique Pérez Herrero, Jun 27 2012
Also numbers n with A001222(n)=3 and A001221(n)=2. - Enrique Pérez Herrero, Jun 27 2012
A089233(a(n)) = 2. - Reinhard Zumkeller, Sep 04 2013
Subsequence of the triprimes (A014612). If a(n) is even, then a(n)/2 is semiprime (A001358). - Wesley Ivan Hurt, Sep 08 2013
From Bernard Schott, Sep 16 2017: (Start)
These numbers are called "Nombres d'Einstein" on the French site "Diophante" (see link) because a(n) = m * c^2 where m and c are two different primes.
The numbers 44 = 2^2 * 11 and 45 = 3^2 * 5 are the two smallest consecutive "Einstein numbers"; 603, 604, 605 are the three smallest consecutive integers in this sequence. It's not possible to get more than five such consecutive numbers (proof in the link); the first set of five such consecutive numbers begins at the 17-digit number 10093613546512321. Where does the first sequence of four consecutive "Einstein numbers" begin? (End) [corrected by Jon E. Schoenfield, Sep 20 2017]
The first set of four consecutive integers in this sequence begins at the 11-digit number 17042641441. (Each such set must include two even numbers, one of which is of the form 2^2*q, the other of the form p^2*2; a quick search, taking the factorizations of consecutive integers before and after numbers of the latter form, shows that the number of sets of four consecutive k-digit integers in this sequence is 1, 7, 12, 18 for k = 11, 12, 13, 14, respectively.) - Jon E. Schoenfield, Sep 16 2017
The first 13 sets of 5 consecutive integers in this sequence have as their first terms 10093613546512321, 14414905793929921, 266667848769941521, 562672865058083521, 1579571757660876721, 1841337567664174321, 2737837351207392721, 4456162869973433521, 4683238426747860721, 4993613853242910721, 5037980611623036721, 5174116847290255921, 5344962129269790721. Each of these numbers except for the last is 7^2 times a prime; the last is 23^2 times a prime. - Jon E. Schoenfield, Sep 17 2017
LINKS
Guilhem Castagnos, Antoine Joux, Fabien Laguillaumie, and Phong Q. Nguyen, Factoring pq^2 with quadratic forms: nice cryptanalyses, Advances in Cryptology - ASIACRYPT 2009. Lecture Notes in Computer Science Volume 5912 (2009), pp. 469-486.
Diophante, A 350, Les Nombres d'Einstein (in French).
René Peralta and Eiji Okamoto, Faster factoring of integers of a special form (1996).
EXAMPLE
a(1) = 12 because 12 = 2^2*3 is the smallest number of the form p^2*q.
MATHEMATICA
Select[Range[12, 452], {1, 2}==Sort[Last/@FactorInteger[ # ]]&] (* Zak Seidov, Jul 19 2009 *)
With[{nn=60}, Take[Union[Flatten[{#[[1]]#[[2]]^2, #[[1]]^2 #[[2]]}&/@ Subsets[ Prime[Range[nn]], {2}]]], nn]] (* Harvey P. Dale, Dec 15 2014 *)
PROG
(PARI) is(n)=vecsort(factor(n)[, 2])==[1, 2]~ \\ Charles R Greathouse IV, Dec 30 2014
(PARI) for(n=1, 1e3, if(numdiv(n) - bigomega(n) == 3, print1(n, ", "))) \\ Altug Alkan, Nov 24 2015
(Python)
from sympy import factorint
def ok(n): return sorted(factorint(n).values()) == [1, 2]
print([k for k in range(453) if ok(k)]) # Michael S. Branicky, Dec 18 2021
CROSSREFS
Numbers with 6 divisors (A030515) which are not 5th powers of primes (A050997).
Subsequence of A325241. Supersequence of A096156.
Table giving for each subsequence the corresponding number of groups of order p^2*q, from Bernard Schott, Jan 23 2022
-------------------------------------------------------------------------------
| Subsequence | A350638 | A143928 | A350115 | A349495 | A350245 | A350422 (*)|
-------------------------------------------------------------------------------
|A000001(p^2*q)| (q+9)/2 | 5 | 5 | 4 | 3 | 2 |
-------------------------------------------------------------------------------
(*) A350422 equals disjoint union of A350332 (p<q) and A350421 (p>q).
KEYWORD
nonn
AUTHOR
Henry Bottomley, Apr 25 2000
EXTENSIONS
Link added and incorrect Mathematica code removed by David Bevan, Sep 17 2011
STATUS
approved
Numbers having a non-maximal prime-factor with exponent greater than 1.
+10
14
12, 20, 24, 28, 36, 40, 44, 45, 48, 52, 56, 60, 63, 68, 72, 76, 80, 84, 88, 90, 92, 96, 99, 100, 104, 108, 112, 116, 117, 120, 124, 126, 132, 135, 136, 140, 144, 148, 152, 153, 156, 160, 164, 168, 171, 172, 175, 176, 180, 184, 188, 189, 192, 196, 198, 200
OFFSET
1,1
COMMENTS
If n is a member so is every positive multiple of n. The primitive elements are A096156.
EXAMPLE
a(4) = 28 = 2^2 * 7 as 2 < 7.
CROSSREFS
Complement of A065200. Cf. A065202, A096156.
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Oct 21 2001
EXTENSIONS
Edited by Franklin T. Adams-Watters, Oct 27 2006
STATUS
approved
Numbers with ordered prime signature (1,2).
+10
13
18, 50, 75, 98, 147, 242, 245, 338, 363, 507, 578, 605, 722, 845, 847, 867, 1058, 1083, 1183, 1445, 1587, 1682, 1805, 1859, 1922, 2023, 2523, 2527, 2645, 2738, 2883, 3179, 3362, 3698, 3703, 3757, 3971, 4107, 4205, 4418, 4693, 4805, 5043, 5547, 5618, 5819
OFFSET
1,1
COMMENTS
Numbers of the form p*q^2 where p and q are primes with p < q.
A054753 contains natural numbers with ordered prime signatures (2,1) and (1,2).
LINKS
Enrique Pérez Herrero, Table of n, a(n) for n = 1..3000
EXAMPLE
18 = 2*3*3, 50 = 2*5*5, 75 = 3*5*5, 98 = 2*7*7, 147 = 3*7*7, ...
MATHEMATICA
Take[ Sort[ Flatten[ Table[ Prime[p]*Prime[q]^2, {q, 2, 16}, {p, q - 1}]]], 46] (* Robert G. Wilson v, Jul 23 2004 *)
PROG
(PARI) list(lim)=my(v=List()); forprime(q=3, sqrtint(lim\2), forprime(p=2, min(lim\q^2, q-1), listput(v, p*q^2))); Set(v) \\ Charles R Greathouse IV, Feb 26 2014
CROSSREFS
Subsequence of A071365.
KEYWORD
easy,nonn
AUTHOR
Alford Arnold, Jul 18 2004
EXTENSIONS
Edited and extended by Robert G. Wilson v, Jul 23 2004
STATUS
approved
Numbers > 1 whose maximum prime exponent is one greater than their minimum.
+10
11
12, 18, 20, 28, 44, 45, 50, 52, 60, 63, 68, 72, 75, 76, 84, 90, 92, 98, 99, 108, 116, 117, 124, 126, 132, 140, 147, 148, 150, 153, 156, 164, 171, 172, 175, 180, 188, 198, 200, 204, 207, 212, 220, 228, 234, 236, 242, 244, 245, 252, 260, 261, 268, 275, 276, 279
OFFSET
1,1
COMMENTS
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions whose maximum multiplicity is one greater than their minimum (counted by A325279).
The asymptotic density of this sequence is 1/zeta(3) - 1/zeta(2) = A088453 - A059956 = 0.22398... . - Amiram Eldar, Jan 30 2023
LINKS
FORMULA
A051903(a(n)) - A051904(a(n)) = 1.
EXAMPLE
The sequence of terms together with their prime indices begins:
12: {1,1,2}
18: {1,2,2}
20: {1,1,3}
28: {1,1,4}
44: {1,1,5}
45: {2,2,3}
50: {1,3,3}
52: {1,1,6}
60: {1,1,2,3}
63: {2,2,4}
68: {1,1,7}
72: {1,1,1,2,2}
75: {2,3,3}
76: {1,1,8}
84: {1,1,2,4}
90: {1,2,2,3}
92: {1,1,9}
98: {1,4,4}
99: {2,2,5}
MATHEMATICA
Select[Range[100], Max@@FactorInteger[#][[All, 2]]-Min@@FactorInteger[#][[All, 2]]==1&]
Select[Range[300], Min[e = FactorInteger[#][[;; , 2]]] +1 == Max[e] &] (* Amiram Eldar, Jan 30 2023 *)
PROG
(Python)
from sympy import factorint
def ok(n):
e = sorted(factorint(n).values())
return n > 1 and max(e) == 1 + min(e)
print([k for k in range(280) if ok(k)]) # Michael S. Branicky, Dec 18 2021
(PARI) is(n)={my(e=factor(n)[, 2]); n>1 && vecmin(e) + 1 == vecmax(e); } \\ Amiram Eldar, Jan 30 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Apr 15 2019
STATUS
approved
Numbers with exactly 2 semiprime divisors.
+10
9
12, 18, 20, 24, 28, 40, 44, 45, 48, 50, 52, 54, 56, 63, 68, 75, 76, 80, 88, 92, 96, 98, 99, 104, 112, 116, 117, 124, 135, 136, 147, 148, 152, 153, 160, 162, 164, 171, 172, 175, 176, 184, 188, 189, 192, 207, 208, 212, 224, 232, 236, 242, 244, 245, 248, 250, 261, 268, 272, 275
OFFSET
1,1
COMMENTS
Numbers of the form p*q^k, where p and q are distinct primes and k>1.
LINKS
EXAMPLE
50 is in the sequence since it has exactly 2 semiprime divisors, 10 and 25.
MATHEMATICA
Select[Range[300], Length[(e = Sort[FactorInteger[#][[;; , 2]]])] == 2 && Min[e] == 1 && Max[e] > 1 &] (* Amiram Eldar, Sep 30 2021 *)
PROG
(Python)
from sympy import factorint
def ok(n):
e = sorted(factorint(n).values())
return len(e) == 2 and e[0] == 1 and e[1] > 1
print([k for k in range(276) if ok(k)]) # Michael S. Branicky, Dec 18 2021
CROSSREFS
Cf. A001358 (semiprimes).
Supersequence of A054753, A096156.
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Jun 16 2021
STATUS
approved
Numbers with more than one prime factor and, in the ordered factorization, the exponent always decreases when read from left to right.
+10
7
12, 20, 24, 28, 40, 44, 45, 48, 52, 56, 63, 68, 72, 76, 80, 88, 92, 96, 99, 104, 112, 116, 117, 124, 135, 136, 144, 148, 152, 153, 160, 164, 171, 172, 175, 176, 184, 188, 189, 192, 200, 207, 208, 212, 224, 232, 236, 244, 248, 261, 268, 272, 275, 279, 284, 288
OFFSET
1,1
COMMENTS
If n = Product_{k=1..m} p(k)^e(k), then m > 1, e(1) > e(2) > ... > e(m).
LINKS
EXAMPLE
80 is 2^4 * 5^1 and 4>1, so 80 is in sequence.
MATHEMATICA
fQ[n_] := Module[{f = Transpose[FactorInteger[n]][[2]]}, Length[f] > 1 && Max[Differences[f]] < 0]; Select[Range[2, 288], fQ] (* T. D. Noe, Nov 04 2013 *)
PROG
(PARI) for(n=1, 320, F=factor(n); t=0; s=matsize(F)[1]; if(s>1, for(k=1, s-1, if(F[k, 2]<=F[k+1, 2], t=1; break)); if(!t, print1(n", "))))
(PARI) is(n) = my(f = factor(n)[, 2]); #f > 1 && vecsort(f, , 12) == f \\ Rick L. Shepherd, Jan 17 2018
(Python)
from sympy import factorint
def ok(n):
e = list(factorint(n).values())
return 1 < len(e) == len(set(e)) and e == sorted(e, reverse=True)
print([k for k in range(289) if ok(k)]) # Michael S. Branicky, Dec 20 2021
CROSSREFS
Subsequence of A126706, A097318, A112769. Supersequence of A096156.
KEYWORD
nonn
AUTHOR
Ralf Stephan, Aug 04 2004
STATUS
approved
Number of ways to write n as n = u*v*w with 1 <= u < v <= w.
+10
6
0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 2, 0, 1, 1, 2, 0, 3, 0, 2, 1, 1, 0, 4, 1, 1, 1, 2, 0, 4, 0, 3, 1, 1, 1, 5, 0, 1, 1, 4, 0, 4, 0, 2, 2, 1, 0, 7, 1, 3, 1, 2, 0, 4, 1, 4, 1, 1, 0, 8, 0, 1, 2, 4, 1, 4, 0, 2, 1, 4, 0, 9, 0, 1, 3, 2, 1, 4, 0, 6, 2, 1, 0, 8, 1, 1, 1, 4, 0, 8, 1, 2, 1, 1, 1, 9, 0, 3, 2, 6, 0, 4, 0, 4, 4, 1, 0, 9, 0, 4, 1, 6, 0, 4, 1, 2, 2, 1, 1, 14
OFFSET
1,12
LINKS
FORMULA
a(n) = 0 iff n=1 or n is prime: a(A008578(n)) = 0, a(A002808(n)) > 0.
a(n) = 1 iff n has 3 or 4 divisors (A323644) (see examples). - Bernard Schott, Dec 13 2021
a(n) = 2 if n = p^2*q, p<q primes (A096156) or n = p^4 (A030514) (see examples). - Bernard Schott, Dec 16 2021
EXAMPLE
n=12: (1,2,6), (1,3,4): therefore a(12)=2;
n=18: (1,2,9), (1,3,6), (2,3,3): therefore a(18)=3.
For n = p*q, p < q primes: n = 1 * p * q, so a(n) = 1.
For n = p^2, p prime: n = 1 * p * p, so a(n) = 1.
For n = p^3, p prime: n = 1 * p * p^2, so a(n) = 1.
For n = p*q^2, p < q < p^2: n = 1 * p * pq = 1* q * p^2, so a(n) = 2 (see n=12).
For n = p*q^2, p < p^2 < q: n = 1 * p * pq = 1 * p^2 * q, so a(n) = 2
For n = p^4, p prime: n = 1 * p * p^3 = 1 * p^2 * p^2, so a(n) = 2.
MATHEMATICA
a[n_] := Module[{s = 0}, Do[Do[Do[If[u v w == n, s++], {w, v, n}], {v, u + 1, n - 1}], {u, Divisors[n]}]; s];
Array[a, 120] (* Jean-François Alcover, Dec 10 2021, after Antti Karttunen *)
PROG
(PARI) A088432(n) = { my(s=0); fordiv(n, u, for(v=u+1, n-1, for(w=v, n, if(u*v*w==n, s++)))); (s); }; \\ Antti Karttunen, Aug 24 2017
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Oct 01 2003
EXTENSIONS
Data section extended to 120 terms by Antti Karttunen, Aug 24 2017
STATUS
approved
a(n) = 1 if n is a number of the form p^2 * q, where p and q are primes with p < q, otherwise 0.
+10
5
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0
OFFSET
1
COMMENTS
a(n) = 1 if n is not a cube of prime and A052126(n) is a square of prime, otherwise 0.
FORMULA
a(n) = A143731(n) * A302048(A052126(n)).
a(n) = A353472(n) - A353473(n).
PROG
(PARI)
A052126(n) = if(1==n, n, (n/vecmax(factor(n)[, 1])));
A353474(n) = (!isprimepower(n) && 2==isprimepower(A052126(n)));
CROSSREFS
Characteristic function of A096156.
KEYWORD
nonn
AUTHOR
Antti Karttunen, Apr 21 2022
STATUS
approved
Numbers of the form p^2 * q where p and q are primes with p^2 < q.
+10
3
20, 28, 44, 52, 68, 76, 92, 99, 116, 117, 124, 148, 153, 164, 171, 172, 188, 207, 212, 236, 244, 261, 268, 279, 284, 292, 316, 332, 333, 356, 369, 387, 388, 404, 412, 423, 428, 436, 452, 477, 508, 524, 531, 548, 549, 556, 596, 603, 604, 628, 639, 652, 657, 668, 692, 711, 716, 724, 725, 747, 764, 772, 775, 788, 796
OFFSET
1,1
COMMENTS
Numbers whose number of divisors of n (A000005) is equal to 3 + the number of prime factors of n (with multiplicity, A001222), and the third smallest divisor is a square of a prime (A001248).
EXAMPLE
20 = 2^2 * 5 is included because 2 < 5, and of the divisors of 20, [1, 2, 4, 5, 10, 20], the third one (4) is a square of prime as 2^2 < 5.
MATHEMATICA
Select[Range[800], (f = FactorInteger[#])[[;; , 2]] == {2, 1} && f[[1, 1]]^2 < f[[2, 1]] &] (* Amiram Eldar, Jul 07 2022 *)
PROG
(PARI)
A355443(n) = ((numdiv(n) == (3+bigomega(n))) && issquare(divisors(n)[3]));
isA355445(n) = A355443(n);
CROSSREFS
Setwise difference A096156 \ A355446. Subsequence of A119315.
Positions of 9's in A290110 and in A300250.
Cf. A000005, A001222, A001248, A355443 (characteristic function).
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jul 02 2022
STATUS
approved
For even n, a(n) = -Sum_{d|n, d<n} a(n/2) * a(d), and for odd n, a(n) = a(A064989(n)), with a(1) = 1.
+10
2
1, -1, -1, 0, -1, -1, -1, 0, 0, -1, -1, -2, -1, -1, -1, 0, -1, 0, -1, -2, -1, -1, -1, -8, 0, -1, 0, -2, -1, -5, -1, 0, -1, -1, -1, 0, -1, -1, -1, -8, -1, -5, -1, -2, -2, -1, -1, -96, 0, 0, -1, -2, -1, 0, -1, -8, -1, -1, -1, -70, -1, -1, -2, 0, -1, -5, -1, -2, -1, -5, -1, 0, -1, -1, 0, -2, -1, -5, -1, -96, 0, -1, -1, -70
OFFSET
1,12
COMMENTS
Apparently, for all i, j >= 1, A077462(i) = A077462(j) => a(i) = a(j).
FORMULA
a(p) = -1 for all primes p.
a(n) = a(A003961(n)) = a(A348717(n)), for all n >= 1.
PROG
(PARI)
A000265(n) = (n>>valuation(n, 2));
A064989(n) = { my(f=factor(A000265(n))); for(i=1, #f~, f[i, 1] = precprime(f[i, 1]-1)); factorback(f); };
memoA353423 = Map();
A353423(n) = if(1==n, 1, my(v); if(mapisdefined(memoA353423, n, &v), v, if(!(n%2), v = -sumdiv(n, d, if(d<n, A353423(n/2)*A353423(d), 0)), v = A353423(A064989(n))); mapput(memoA353423, n, v); (v)));
CROSSREFS
Cf. A070003 (positions of 0's), A167171 (positions of -1's), A096156 (positions of -2's), A007304 (positions of -5's), A086975 (positions of -70's), all these are so far conjectural. Also a subsequence of A178739 seems to give the positions of -96's.
Cf. also A353454, A353457, A353458, A353467 for similar recurrences.
KEYWORD
sign
AUTHOR
Antti Karttunen, Apr 21 2022
STATUS
approved

Search completed in 0.012 seconds