Displaying 1-7 of 7 results found.
page
1
Primes p = p_(n+1) such that p_n + p_(n+2) = 2*p_(n+1) + 8.
+10
8
139, 181, 241, 283, 421, 467, 811, 829, 953, 1021, 1051, 1153, 1259, 1307, 1699, 1723, 1831, 1879, 2029, 2089, 2143, 2221, 2251, 2297, 2357, 2423, 2621, 2731, 3001, 3191, 3347, 3361, 3583, 3769, 3823, 3853, 4139, 4219, 4231, 4243, 4261, 4273, 4339, 4373
COMMENTS
Primes that are second prime chords.
These come from music based on the prime differences where the chords are an even number of note steps from the primary note.
MATHEMATICA
m = 2; Prime[ 1 + Select[ Range[600], Prime[ # + 2] - 2*Prime[ # + 1] + Prime[ # ] - 4*m == 0 &]] (* Robert G. Wilson v, Jul 14 2004 *)
Transpose[Select[Partition[Prime[Range[600]], 3, 1], #[[1]]+#[[3]]==2#[[2]]+ 8&]][[2]] (* Harvey P. Dale, Feb 26 2015 *)
Primes p = p_(n+1) such that p_n + p_(n+2) = 2*p_(n+1) + 16.
+10
8
523, 887, 1129, 2557, 3271, 3739, 3947, 4027, 4159, 4423, 4759, 4831, 5449, 6397, 6427, 6451, 7351, 7459, 8017, 8543, 8783, 8867, 9067, 9349, 10433, 10667, 11177, 11447, 11597, 11867, 12049, 13063, 13267, 13421, 13729, 14011, 14087, 14107
COMMENTS
Primes that are fourth prime chords.
These come from music based on the prime differences where the chords are an even number of note steps from the primary note.
MAPLE
P:= select(isprime, [seq(i, i=1..20000, 2)]):
J:= select(i -> P[i-1]+P[i+1] = 2*P[i]+16, [$2..nops(P)-1]):
MATHEMATICA
m = 4; Prime[ 1 + Select[ Range[1700], Prime[ # + 2] - 2*Prime[ # + 1] + Prime[ # ] - 4*m == 0 &]] (* Robert G. Wilson v, Jul 14 2004 *)
Select[Partition[Prime[Range[3000]], 3, 1], #[[1]]+#[[3]]==2#[[2]]+16&][[;; , 2]] (* Harvey P. Dale, Jul 08 2024 *)
Primes p = p_(n+1) such that p_n + p_(n+2) = 2*p_(n+1) + 4.
+10
8
31, 61, 73, 151, 271, 293, 337, 401, 433, 491, 547, 571, 577, 601, 743, 761, 839, 911, 1033, 1039, 1063, 1201, 1231, 1291, 1321, 1409, 1453, 1531, 1571, 1621, 1627, 2003, 2017, 2039, 2131, 2243, 2273, 2341, 2383, 2551, 2663, 2713, 2719, 2791, 3041, 3049
COMMENTS
Primes that are first prime chords.
These come from music based on the prime differences where the chords are an even number of note steps from the primary note.
EXAMPLE
31 is a term because 29+37 = 2*31 + 4 = 66.
MAPLE
primes:= select(isprime, [seq(i, i=3..10000, 2)]):
L:= primes[1..-3]+primes[3..-1]-2*primes[2..-2]:
primes[select(t -> L[t-1]=4, [$2..nops(L)+1])]; # Robert Israel, Jun 28 2018
MATHEMATICA
m = 1; Prime[1 + Select[ Range[450], Prime[ # + 2] - 2*Prime[ # + 1] + Prime[ # ] - 4*m == 0 &]] (* Robert G. Wilson v, Jul 14 2004 *)
Select[Partition[Prime[Range[500]], 3, 1], #[[1]]+#[[3]]==2#[[2]]+4&][[;; , 2]] (* Harvey P. Dale, Jan 31 2024 *)
Primes p = p_(n+1) such that p_n + p_(n+2) = 2*p_(n+1) + 12.
+10
8
1069, 1759, 1913, 3803, 4463, 4603, 8329, 9109, 9749, 11633, 12619, 12763, 15199, 16993, 17299, 17449, 19163, 20029, 20183, 21943, 22349, 22409, 22549, 22943, 23209, 23339, 24709, 25373, 26209, 26783, 26993, 28669, 28979, 29723, 29959
COMMENTS
Primes that are third prime chords.
These come from music based on the prime differences where the chords are an even number of note steps from the primary note.
MATHEMATICA
m = 3; Prime[1 + Select[ Range[3300], Prime[ # + 2] - 2*Prime[ # + 1] + Prime[ # ] - 4*m == 0 &]] (* Robert G. Wilson v, Jul 14 2004 *)
Transpose[Select[Partition[Prime[Range[4000]], 3, 1], #[[1]]+#[[3]]== 2#[[2]] +12&]][[2]] (* Harvey P. Dale, Apr 18 2015 *)
34, 42, 53, 61, 82, 91, 141, 145, 162, 172, 177, 191, 205, 214, 266, 269, 282, 289, 308, 316, 324, 331, 335, 342, 350, 360, 381, 399, 431, 452, 472, 474, 502, 525, 531, 535, 570, 578, 580, 582, 585, 587, 593, 597, 609, 672, 687, 704, 728, 746, 773, 779, 790
MATHEMATICA
m = 2; 1 + Select[ Range[800], Prime[ # + 2] - 2*Prime[ # + 1] + Prime[ # ] - 4*m == 0 &] (* Robert G. Wilson v, Jul 14 2004 *)
99, 154, 189, 375, 462, 522, 548, 557, 573, 602, 641, 650, 721, 834, 836, 838, 937, 945, 1010, 1066, 1095, 1106, 1127, 1158, 1277, 1302, 1355, 1381, 1396, 1423, 1444, 1556, 1577, 1592, 1625, 1654, 1662, 1663, 1669, 1683, 1754, 1792, 1818, 1861, 1887, 1944
MATHEMATICA
m = 4; 1 + Select[ Range[2000], Prime[ # + 2] - 2*Prime[ # + 1] + Prime[ # ] - 4*m == 0 &] (* Robert G. Wilson v, Jul 14 2004 *)
180, 274, 293, 529, 607, 623, 1045, 1130, 1203, 1399, 1508, 1523, 1775, 1960, 1989, 2007, 2174, 2266, 2284, 2460, 2502, 2508, 2521, 2560, 2591, 2603, 2736, 2799, 2881, 2939, 2961, 3124, 3153, 3223, 3243, 3285, 3357, 3419, 3420, 3434, 3561, 3574, 3642
MATHEMATICA
m = 3; 1 + Select[ Range[4000], Prime[ # + 2] - 2*Prime[ # + 1] + Prime[ # ] - 4*m == 0 &] (* Robert G. Wilson v, Jul 14 2004 *)
Search completed in 0.016 seconds
|