[go: up one dir, main page]

login
Search: a095648 -id:a095648
     Sort: relevance | references | number | modified | created      Format: long | short | data
Primes p = p_(n+1) such that p_n + p_(n+2) = 2*p_(n+1) + 8.
+10
8
139, 181, 241, 283, 421, 467, 811, 829, 953, 1021, 1051, 1153, 1259, 1307, 1699, 1723, 1831, 1879, 2029, 2089, 2143, 2221, 2251, 2297, 2357, 2423, 2621, 2731, 3001, 3191, 3347, 3361, 3583, 3769, 3823, 3853, 4139, 4219, 4231, 4243, 4261, 4273, 4339, 4373
OFFSET
1,1
COMMENTS
Primes that are second prime chords.
These come from music based on the prime differences where the chords are an even number of note steps from the primary note.
LINKS
MATHEMATICA
m = 2; Prime[ 1 + Select[ Range[600], Prime[ # + 2] - 2*Prime[ # + 1] + Prime[ # ] - 4*m == 0 &]] (* Robert G. Wilson v, Jul 14 2004 *)
Transpose[Select[Partition[Prime[Range[600]], 3, 1], #[[1]]+#[[3]]==2#[[2]]+ 8&]][[2]] (* Harvey P. Dale, Feb 26 2015 *)
KEYWORD
nonn
AUTHOR
Roger L. Bagula, Jul 02 2004
EXTENSIONS
Edited by Robert G. Wilson v, Jul 14 2004
Description corrected by N. J. A. Sloane, Jul 19 2004
STATUS
approved
Primes p = p_(n+1) such that p_n + p_(n+2) = 2*p_(n+1) + 16.
+10
8
523, 887, 1129, 2557, 3271, 3739, 3947, 4027, 4159, 4423, 4759, 4831, 5449, 6397, 6427, 6451, 7351, 7459, 8017, 8543, 8783, 8867, 9067, 9349, 10433, 10667, 11177, 11447, 11597, 11867, 12049, 13063, 13267, 13421, 13729, 14011, 14087, 14107
OFFSET
1,1
COMMENTS
Primes that are fourth prime chords.
These come from music based on the prime differences where the chords are an even number of note steps from the primary note.
LINKS
MAPLE
P:= select(isprime, [seq(i, i=1..20000, 2)]):
J:= select(i -> P[i-1]+P[i+1] = 2*P[i]+16, [$2..nops(P)-1]):
P[J]; # Robert Israel, Jun 10 2024
MATHEMATICA
m = 4; Prime[ 1 + Select[ Range[1700], Prime[ # + 2] - 2*Prime[ # + 1] + Prime[ # ] - 4*m == 0 &]] (* Robert G. Wilson v, Jul 14 2004 *)
Select[Partition[Prime[Range[3000]], 3, 1], #[[1]]+#[[3]]==2#[[2]]+16&][[;; , 2]] (* Harvey P. Dale, Jul 08 2024 *)
KEYWORD
nonn
AUTHOR
Roger L. Bagula, Jul 02 2004
EXTENSIONS
Edited and extended by Robert G. Wilson v, Jul 14 2004
Edited by N. J. A. Sloane, Nov 07 2005
STATUS
approved
Primes p = p_(n+1) such that p_n + p_(n+2) = 2*p_(n+1) + 4.
+10
8
31, 61, 73, 151, 271, 293, 337, 401, 433, 491, 547, 571, 577, 601, 743, 761, 839, 911, 1033, 1039, 1063, 1201, 1231, 1291, 1321, 1409, 1453, 1531, 1571, 1621, 1627, 2003, 2017, 2039, 2131, 2243, 2273, 2341, 2383, 2551, 2663, 2713, 2719, 2791, 3041, 3049
OFFSET
1,1
COMMENTS
Primes that are first prime chords.
These come from music based on the prime differences where the chords are an even number of note steps from the primary note.
LINKS
EXAMPLE
31 is a term because 29+37 = 2*31 + 4 = 66.
MAPLE
primes:= select(isprime, [seq(i, i=3..10000, 2)]):
L:= primes[1..-3]+primes[3..-1]-2*primes[2..-2]:
primes[select(t -> L[t-1]=4, [$2..nops(L)+1])]; # Robert Israel, Jun 28 2018
MATHEMATICA
m = 1; Prime[1 + Select[ Range[450], Prime[ # + 2] - 2*Prime[ # + 1] + Prime[ # ] - 4*m == 0 &]] (* Robert G. Wilson v, Jul 14 2004 *)
Select[Partition[Prime[Range[500]], 3, 1], #[[1]]+#[[3]]==2#[[2]]+4&][[;; , 2]] (* Harvey P. Dale, Jan 31 2024 *)
KEYWORD
nonn
AUTHOR
Roger L. Bagula, Jul 02 2004
EXTENSIONS
Edited by Robert G. Wilson v, Jul 14 2004
Description corrected by N. J. A. Sloane, Jul 19 2004
STATUS
approved
Primes p = p_(n+1) such that p_n + p_(n+2) = 2*p_(n+1) + 12.
+10
8
1069, 1759, 1913, 3803, 4463, 4603, 8329, 9109, 9749, 11633, 12619, 12763, 15199, 16993, 17299, 17449, 19163, 20029, 20183, 21943, 22349, 22409, 22549, 22943, 23209, 23339, 24709, 25373, 26209, 26783, 26993, 28669, 28979, 29723, 29959
OFFSET
1,1
COMMENTS
Primes that are third prime chords.
These come from music based on the prime differences where the chords are an even number of note steps from the primary note.
LINKS
MATHEMATICA
m = 3; Prime[1 + Select[ Range[3300], Prime[ # + 2] - 2*Prime[ # + 1] + Prime[ # ] - 4*m == 0 &]] (* Robert G. Wilson v, Jul 14 2004 *)
Transpose[Select[Partition[Prime[Range[4000]], 3, 1], #[[1]]+#[[3]]== 2#[[2]] +12&]][[2]] (* Harvey P. Dale, Apr 18 2015 *)
KEYWORD
nonn
AUTHOR
Roger L. Bagula, Jul 02 2004
EXTENSIONS
Edited and extended by Robert G. Wilson v, Jul 14 2004
Edited by N. J. A. Sloane, Nov 07 2005
STATUS
approved
Indices of the primes in A095649: A095649(n) = prime(a(n)).
+10
7
34, 42, 53, 61, 82, 91, 141, 145, 162, 172, 177, 191, 205, 214, 266, 269, 282, 289, 308, 316, 324, 331, 335, 342, 350, 360, 381, 399, 431, 452, 472, 474, 502, 525, 531, 535, 570, 578, 580, 582, 585, 587, 593, 597, 609, 672, 687, 704, 728, 746, 773, 779, 790
OFFSET
1,1
MATHEMATICA
m = 2; 1 + Select[ Range[800], Prime[ # + 2] - 2*Prime[ # + 1] + Prime[ # ] - 4*m == 0 &] (* Robert G. Wilson v, Jul 14 2004 *)
KEYWORD
nonn
AUTHOR
Roger L. Bagula, Jul 02 2004
EXTENSIONS
Edited by Robert G. Wilson v, Jul 14 2004
Edited by N. J. A. Sloane, Nov 07 2005
STATUS
approved
Indices of the primes in A095651: A095651(n) = prime(a(n)).
+10
7
99, 154, 189, 375, 462, 522, 548, 557, 573, 602, 641, 650, 721, 834, 836, 838, 937, 945, 1010, 1066, 1095, 1106, 1127, 1158, 1277, 1302, 1355, 1381, 1396, 1423, 1444, 1556, 1577, 1592, 1625, 1654, 1662, 1663, 1669, 1683, 1754, 1792, 1818, 1861, 1887, 1944
OFFSET
1,1
MATHEMATICA
m = 4; 1 + Select[ Range[2000], Prime[ # + 2] - 2*Prime[ # + 1] + Prime[ # ] - 4*m == 0 &] (* Robert G. Wilson v, Jul 14 2004 *)
KEYWORD
nonn
AUTHOR
Roger L. Bagula, Jul 02 2004
EXTENSIONS
Edited and extended by Robert G. Wilson v, Jul 14 2004
Edited by N. J. A. Sloane, Nov 07 2005
STATUS
approved
Indices of the primes in A095673: A095673(n) = prime(a(n)).
+10
7
180, 274, 293, 529, 607, 623, 1045, 1130, 1203, 1399, 1508, 1523, 1775, 1960, 1989, 2007, 2174, 2266, 2284, 2460, 2502, 2508, 2521, 2560, 2591, 2603, 2736, 2799, 2881, 2939, 2961, 3124, 3153, 3223, 3243, 3285, 3357, 3419, 3420, 3434, 3561, 3574, 3642
OFFSET
1,1
MATHEMATICA
m = 3; 1 + Select[ Range[4000], Prime[ # + 2] - 2*Prime[ # + 1] + Prime[ # ] - 4*m == 0 &] (* Robert G. Wilson v, Jul 14 2004 *)
KEYWORD
nonn
AUTHOR
Roger L. Bagula, Jul 02 2004
EXTENSIONS
Edited and extended by Robert G. Wilson v, Jul 14 2004
Edited by N. J. A. Sloane, Nov 07 2005
STATUS
approved

Search completed in 0.016 seconds