[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a094761 -id:a094761
     Sort: relevance | references | number | modified | created      Format: long | short | data
Trajectory of 2 under repeated application of the map n -> n + square excess of n.
+10
3
2, 3, 5, 6, 8, 12, 15, 21, 26, 27, 29, 33, 41, 46, 56, 63, 77, 90, 99, 117, 134, 147, 150, 156, 168, 192, 215, 234, 243, 261, 266, 276, 296, 303, 317, 345, 366, 371, 381, 401, 402, 404, 408, 416, 432, 464, 487, 490, 496, 508, 532, 535, 541, 553, 577, 578, 580, 584, 592, 608
OFFSET
0,1
LINKS
S. H. Weintraub, An interesting recursion, Amer. Math. Monthly, 111 (No. 6, 2004), 528-530.
MAPLE
a[0]:= 2:
for n from 1 to 100 do a[n]:= f(a[n-1]) od:
seq(a[n], n=0..100); # Robert Israel, Jan 28 2018
PROG
(PARI) lista(nn) = {print1(n=2, ", "); for (k=2, nn, m = 2*n - sqrtint(n)^2; print1(m, ", "); n = m; ); } \\ Michel Marcus, Oct 23 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jun 10 2004
STATUS
approved
Trajectory of 7 under repeated application of the map n --> n + square excess of n.
+10
2
7, 10, 11, 13, 17, 18, 20, 24, 32, 39, 42, 48, 60, 71, 78, 92, 103, 106, 112, 124, 127, 133, 145, 146, 148, 152, 160, 176, 183, 197, 198, 200, 204, 212, 228, 231, 237, 249, 273, 290, 291, 293, 297, 305, 321, 353, 382, 403, 406, 412, 424, 448, 455, 469, 497, 510, 536, 543
OFFSET
0,1
REFERENCES
H. Brocard, Note 2837, L'Intermédiaire des Mathématiciens, 11 (1904), p. 239.
LINKS
S. H. Weintraub, An interesting recursion, Amer. Math. Monthly, 111 (No. 6, 2004), 528-530.
PROG
(PARI) lista(nn) = {print1(n=7, ", "); for (k=2, nn, m = 2*n - sqrtint(n)^2; print1(m, ", "); n = m; ); } \\ Michel Marcus, Oct 24 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jun 10 2004
STATUS
approved
Lower triangular matrix describing the shape of a half hyperbola in the Dirichlet divisor problem.
+10
0
1, 1, 1, 1, 1, 1, 0, 2, 1, 1, 0, 2, 1, 1, 1, 0, 1, 2, 1, 1, 1, 0, 1, 2, 1, 1, 1, 1, 0, 1, 1, 2, 1, 1, 1, 1, 0, 0, 2, 2, 1, 1, 1, 1, 1, 0, 0, 2, 1, 2, 1, 1, 1, 1, 1, 0, 0, 2, 1, 2, 1, 1, 1, 1, 1, 1, 0, 0, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1
OFFSET
1,8
COMMENTS
The sum of terms of row n is n. Length of row n is n.
From Mats Granvik, Feb 21 2016: (Start)
A006218(n) = (n^2 - ((2*Sum_{kk=1..n} Sum_{k=1..kk} T(n,k)) - n)) + 2*n - round(1 + (1/2)*(-3 + sqrt(n) + sqrt(1 + n))).
A006218(n) = -((n^2 - ((2*Sum_{kk=1..n} Sum_{k=1..kk} T(n,n-k+1)) - n)) - 2*n + round(1 + (1/2)*(-3 + sqrt(n) + sqrt(1 + n)))).
(End)
From Mats Granvik, May 28 2017: (Start)
A006218(n) = (n^2 - (2*(Sum_{k=1..n} T(n, k)*(n - k + 1)) - n)) + 2*n - round(1 + (1/2)*(-3 + sqrt(n) + sqrt(1 + n))).
A006218(n) = -((n^2 - (2*(Sum_{k=1..n} T(n, n - k + 1)*(n - k + 1)) - n)) - 2*n + round(1 + (1/2)*(-3 + sqrt(n) + sqrt(1 + n)))).
(End)
From Mats Granvik, Sep 07 2017: (Start)
It appears that:
The number of 0's in row n is equal to the number of 2's in row n and their number is given by A000196(n) - 1.
The number of 1's in column k is given by A152948(k+2).
The number of 2's in column k is given by A000096(k-1).
The row index of the last nonzero entry in column k is given by A005563(k).
(End)
From Mats Granvik, Oct 06 2018: (Start)
The smallest k such that T(n,k)=2 is given by A079643(n) = floor(n/floor(sqrt(n))).
This gives the lower bound: A006218(n) >= A094761(n) + A079643(n)*2*(A000196(n)-1).
<=> A006218(n) >= 2*n - (floor(sqrt(n)))^2 + floor(n/floor(sqrt(n)))*2*floor(sqrt(n)-1).
The average of k:s such that T(n,k)=2, for n>3 is given by:
b(n) = Sum_{k=1..n} (k*floor(abs(T(n, k)-1/2)))/floor(sqrt(n)-1).
This gives A006218(n) = 2*n - (floor(sqrt(n)))^2 + b(n)*2*floor(sqrt(n)-1) = 2*n - (floor(sqrt(n)))^2 + (Sum_{k=1..n} (k*floor(abs(T(n, k)-1/2))))*2, for n>3.
The largest k such that T(n,k)=2 is given by A004526(n) = floor(n/2).
This gives the upper bound: A006218(n) <= A094761(n) + A004526(n)*2*(A000196(n)-1).
<=> A006218(n) <= 2*n - (floor(sqrt(n)))^2 + floor(n/2)*2*floor(sqrt(n)-1).
The lower bound starts: 1, 3, 5, 8, 10, 14, 16, 20, 21, 23, ...
Sequence A006218 starts: 1, 3, 5, 8, 10, 14, 16, 20, 23, 27, ...
The upper bound starts: 1, 3, 5, 8, 10, 14, 16, 20, 25, 31, ...
(End)
LINKS
Eric Weisstein's World of Mathematics, Dirichlet Divisor Problem
FORMULA
See Mathematica program.
EXAMPLE
1;
1, 1;
1, 1, 1;
0, 2, 1, 1;
0, 2, 1, 1, 1;
0, 1, 2, 1, 1, 1;
0, 1, 2, 1, 1, 1, 1;
0, 1, 1, 2, 1, 1, 1, 1;
0, 0, 2, 2, 1, 1, 1, 1, 1;
0, 0, 2, 1, 2, 1, 1, 1, 1, 1;
0, 0, 2, 1, 2, 1, 1, 1, 1, 1, 1;
0, 0, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1;
MATHEMATICA
(* From Mats Granvik, Feb 21 2016: (Start) *)
nn = 12;
T = Table[
Sum[Table[
If[And[If[n*k <= r, If[n >= k, 1, 0], 0] == 1,
If[(n + 1)*(k + 1) <= r, If[n >= k, 1, 0], 0] == 0], 1, 0], {n,
1, r}], {k, 1, r}], {r, 1, nn}];
Flatten[T]
A006218a = Table[(n^2 - (2*Sum[Sum[T[[n, k]], {k, 1, kk}], {kk, 1, n}] -
n)) + 2*n - Round[1 + (1/2)*(-3 + Sqrt[n] + Sqrt[1 + n])], {n,
1, nn}];
A006218b = -Table[(n^2 - (2*
Sum[Sum[T[[n, n - k + 1]], {k, 1, kk}], {kk, 1, n}] - n)) -
2*n + Round[1 + (1/2)*(-3 + Sqrt[n] + Sqrt[1 + n])], {n, 1, nn}];
(A006218b - A006218a);
(* (End) *)
(* From Mats Granvik, May 28 2017: (Start) *)
nn = 12;
T = Table[
Sum[Table[
If[And[If[n*k <= r, If[n >= k, 1, 0], 0] == 1,
If[(n + 1)*(k + 1) <= r, If[n >= k, 1, 0], 0] == 0], 1, 0], {n,
1, r}], {k, 1, r}], {r, 1, nn}];
Flatten[T]
A006218a = Table[(n^2 - (2*Sum[T[[n, k]]*(n - k + 1), {k, 1, n}] - n)) +
2*n - Round[1 + (1/2)*(-3 + Sqrt[n] + Sqrt[1 + n])], {n, 1, nn}];
A006218b = Table[-((n^2 - (2*Sum[T[[n, n - k + 1]]*(n - k + 1), {k, 1, n}] -
n)) - 2*n +
Round[1 + (1/2)*(-3 + Sqrt[n] + Sqrt[1 + n])]), {n, 1, nn}];
(A006218b - A006218a);
(* (End) *)
KEYWORD
tabl,nonn
AUTHOR
Mats Granvik, May 31 2015
STATUS
approved

Search completed in 0.008 seconds