[go: up one dir, main page]

login
Search: a082140 -id:a082140
     Sort: relevance | references | number | modified | created      Format: long | short | data
Coefficients of expansion of (1-x)/(1-2*x) in powers of x.
+10
886
1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 268435456, 536870912, 1073741824, 2147483648, 4294967296, 8589934592
OFFSET
0,3
COMMENTS
Apart from initial term, same as A000079 (powers of 2).
Also the number of compositions (ordered partitions) of n. - Toby Bartels, Aug 27 2003
Number of ways of putting n unlabeled items into (any number of) labeled boxes where every box contains at least one item. Also "unimodal permutations of n items", i.e., those which rise then fall. (E.g., for three items: ABC, ACB, BCA and CBA are unimodal.) - Henry Bottomley, Jan 17 2001
Number of permutations in S_n avoiding the patterns 213 and 312. - Tuwani Albert Tshifhumulo, Apr 20 2001. More generally (see Simion and Schmidt), the number of permutations in S_n avoiding (i) the 123 and 132 patterns; (ii) the 123 and 213 patterns; (iii) the 132 and 213 patterns; (iv) the 132 and 231 patterns; (v) the 132 and 312 patterns; (vi) the 213 and 231 patterns; (vii) the 213 and 312 patterns; (viii) the 231 and 312 patterns; (ix) the 231 and 321 patterns; (x) the 312 and 321 patterns.
a(n+2) is the number of distinct Boolean functions of n variables under action of symmetric group.
Also the number of unlabeled (1+2)-free posets. - Detlef Pauly, May 25 2003
Image of the central binomial coefficients A000984 under the Riordan array ((1-x), x*(1-x)). - Paul Barry, Mar 18 2005
Binomial transform of (1, 0, 1, 0, 1, 0, 1, 0, 1, 0, ...); inverse binomial transform of A007051. - Philippe Deléham, Jul 04 2005
Also, number of rationals in [0, 1) whose binary expansions terminate after n bits. - Brad Chalfan, May 29 2006
Equals row sums of triangle A144157. - Gary W. Adamson, Sep 12 2008
Prepend A089067 with a 1, getting (1, 1, 3, 5, 13, 23, 51, ...) as polcoeff A(x); then (1, 1, 2, 4, 8, 16, ...) = A(x)/A(x^2). - Gary W. Adamson, Feb 18 2010
An elephant sequence, see A175655. For the central square four A[5] vectors, with decimal values 2, 8, 32 and 128, lead to this sequence. For the corner squares these vectors lead to the companion sequence A094373. - Johannes W. Meijer, Aug 15 2010
From Paul Curtz, Jul 20 2011: (Start)
Array T(m,n) = 2*T(m,n-1) + T(m-1,n):
1, 1, 2, 4, 8, 16, ... = a(n)
1, 3, 8, 20, 48, 112, ... = A001792,
1, 5, 18, 56, 160, 432, ... = A001793,
1, 7, 32, 120, 400, 1232, ... = A001794,
1, 9, 50, 220, 840, 2912, ... = A006974, followed with A006975, A006976, gives nonzero coefficients of Chebyshev polynomials of first kind A039991 =
1,
1, 0,
2, 0, -1,
4, 0, -3, 0,
8, 0, -8, 0, 1.
T(m,n) third vertical: 2*n^2, n positive (A001105).
Fourth vertical appears in Janet table even rows, last vertical (A168342 array, A138509, rank 3, 13, = A166911)). (End)
A131577(n) and differences are:
0, 1, 2, 4, 8, 16,
1, 1, 2, 4, 8, 16, = a(n),
0, 1, 2, 4, 8, 16,
1, 1, 2, 4, 8, 16.
Number of 2-color necklaces of length 2n equal to their complemented reversal. For length 2n+1, the number is 0. - David W. Wilson, Jan 01 2012
Edges and also central terms of triangle A198069: a(0) = A198069(0,0) and for n > 0: a(n) = A198069(n,0) = A198069(n,2^n) = A198069(n,2^(n-1)). - Reinhard Zumkeller, May 26 2013
These could be called the composition numbers (see the second comment) since the equivalent sequence for partitions is A000041, the partition numbers. - Omar E. Pol, Aug 28 2013
Number of self conjugate integer partitions with exactly n parts for n>=1. - David Christopher, Aug 18 2014
The sequence is the INVERT transform of (1, 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...). - Gary W. Adamson, Jul 16 2015
Also, number of threshold graphs on n nodes [Hougardy]. - Falk Hüffner, Dec 03 2015
Number of ternary words of length n in which binary subwords appear in the form 10...0. - Milan Janjic, Jan 25 2017
a(n) is the number of words of length n over an alphabet of two letters, of which one letter appears an even number of times (the empty word of length 0 is included). See the analogous odd number case in A131577, and the Balakrishnan reference in A006516 (the 4-letter odd case), pp. 68-69, problems 2.66, 2.67 and 2.68. - Wolfdieter Lang, Jul 17 2017
Number of D-equivalence classes of Łukasiewicz paths. Łukasiewicz paths are D-equivalent iff the positions of pattern D are identical in these paths. - Sergey Kirgizov, Apr 08 2018
Number of color patterns (set partitions) for an oriented row of length n using two or fewer colors (subsets). Two color patterns are equivalent if we permute the colors. For a(4)=8, the 4 achiral patterns are AAAA, AABB, ABAB, and ABBA; the 4 chiral patterns are the 2 pairs AAAB-ABBB and AABA-ABAA. - Robert A. Russell, Oct 30 2018
The determinant of the symmetric n X n matrix M defined by M(i,j) = (-1)^max(i,j) for 1 <= i,j <= n is equal to a(n) * (-1)^(n*(n+1)/2). - Bernard Schott, Dec 29 2018
For n>=1, a(n) is the number of permutations of length n whose cyclic representations can be written in such a way that when the cycle parentheses are removed what remains is 1 through n in natural order. For example, a(4)=8 since there are exactly 8 permutations of this form, namely, (1 2 3 4), (1)(2 3 4), (1 2)(3 4), (1 2 3)(4), (1)(2)(3 4), (1)(2 3)(4), (1 2)(3)(4), and (1)(2)(3)(4). Our result follows readily by conditioning on k, the number of parentheses pairs of the form ")(" in the cyclic representation. Since there are C(n-1,k) ways to insert these in the cyclic representation and since k runs from 0 to n-1, we obtain a(n) = Sum_{k=0..n-1} C(n-1,k) = 2^(n-1). - Dennis P. Walsh, May 23 2020
Maximum number of preimages that a permutation of length n + 1 can have under the consecutive-231-avoiding stack-sorting map. - Colin Defant, Aug 28 2020
REFERENCES
Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem, Mathematics and Computer Education Journal, Vol. 31, No. 1, pp. 24-28, Winter 1997.
S. Kitaev, Patterns in Permutations and Words, Springer-Verlag, 2011. see p. 399 Table A.7
Xavier Merlin, Methodix Algèbre, Ellipses, 1995, p. 153.
LINKS
Michael A. Allen, On a Two-Parameter Family of Generalizations of Pascal's Triangle, arXiv:2209.01377 [math.CO], 2022.
Christopher Bao, Yunseo Choi, Katelyn Gan, and Owen Zhang, On a Conjecture by Baril, Cerbai, Khalil, and Vajnovszki on Two Restricted Stacks, arXiv:2308.09344 [math.CO], 2023.
Jean-Luc Baril, Sergey Kirgizov and Armen Petrossian, Enumeration of Łukasiewicz paths modulo some patterns, arXiv:1804.01293 [math.CO], 2018.
Jean-Luc Baril, Sergey Kirgizov, and Vincent Vajnovszki, Descent distribution on Catalan words avoiding a pattern of length at most three, arXiv:1803.06706 [math.CO], 2018.
Jean-Luc Baril and José Luis Ramírez, Descent distribution on Catalan words avoiding ordered pairs of Relations, arXiv:2302.12741 [math.CO], 2023.
Paul Barry, A Catalan Transform and Related Transformations on Integer Sequences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.5.
Christian Bean, Bjarki Gudmundsson, and Henning Ulfarsson, Automatic discovery of structural rules of permutation classes, arXiv:1705.04109 [math.CO], 2017.
Daniel Birmajer, Juan B. Gil, Jordan O. Tirrell, and Michael D. Weiner, Pattern-avoiding stabilized-interval-free permutations, arXiv:2306.03155 [math.CO], 2023.
Joshua P. Bowman, Compositions with an Odd Number of Parts, and Other Congruences, J. Int. Seq (2024) Vol. 27, Art. 24.3.6. See p. 14.
Giulio Cerbai, Anders Claesson, and Luca Ferrari, Stack sorting with restricted stacks, arXiv:1907.08142 [cs.DS], 2019.
Colin Defant and Kai Zheng, Stack-sorting with consecutive-pattern-avoiding stacks, arXiv:2008.12297 [math.CO], 2020.
John B. Dobson, A matrix variation on Ramus's identity for lacunary sums of binomial coefficients, arXiv preprint arXiv:1610.09361 [math.NT], 2016.
Mareike Fischer, Extremal Values of the Sackin Tree Balance Index, Ann. Comb. (2021) Vol. 25, 515-541, Remark 10.
Juan B. Gil and Jessica A. Tomasko, Fibonacci colored compositions and applications, arXiv:2108.06462 [math.CO], 2021.
Hannah Golab, Pattern avoidance in Cayley permutations, Master's Thesis, Northern Arizona Univ. (2024). See p. 25.
Nickolas Hein and Jia Huang, Variations of the Catalan numbers from some nonassociative binary operations, arXiv:1807.04623 [math.CO], 2018.
Nickolas Hein and Jia Huang, Modular Catalan Numbers, arXiv:1508.01688 [math.CO], 2015-2016. See Table 1.1 p. 2.
S. Heubach and T. Mansour, Counting rises, levels and drops in compositions, arXiv:math/0310197 [math.CO], 2003.
S. Hougardy, Classes of perfect graphs, Discr. Math. 306 (2006), 2529-2571.
Sergey Kitaev, Jeffrey Remmel and Mark Tiefenbruck, Marked mesh patterns in 132-avoiding permutations I, arXiv:1201.6243v1 [math.CO], 2012 (Corollary 3, case k=2, pages 10-11). - From N. J. A. Sloane, May 09 2012
Sergey Kitaev, Jeffrey Remmel, and Mark Tiefenbruck, Quadrant Marked Mesh Patterns in 132-Avoiding Permutations II, Electronic Journal of Combinatorial Number Theory, Volume 15 #A16. Also on arXiv, arXiv:1302.2274 [math.CO], 2013.
Olivia Nabawanda and Fanja Rakotondrajao, The sets of flattened partitions with forbidden patterns, arXiv:2011.07304 [math.CO], 2020.
R. A. Proctor, Let's Expand Rota's Twelvefold Way for Counting Partitions!, arXiv:math/0606404 [math.CO], 2006-2007.
L. Pudwell, Pattern avoidance in trees (slides from a talk, mentions many sequences), 2012. - From N. J. A. Sloane, Jan 03 2013
Santiago Rojas-Rojas, Camila Muñoz, Edgar Barriga, Pablo Solano, Aldo Delgado, and Carla Hermann-Avigliano, Analytic Evolution for Complex Coupled Tight-Binding Models: Applications to Quantum Light Manipulation, arXiv:2310.12366 [quant-ph], 2023. See p. 12.
R. Simion and F. W. Schmidt, Restricted permutations, European J. Combin., 6, 383-406, 1985, see pp. 392-393.
Christoph Wernhard and Wolfgang Bibel, Learning from Łukasiewicz and Meredith: Investigations into Proof Structures (Extended Version), arXiv:2104.13645 [cs.AI], 2021.
Yan X. Zhang, Four Variations on Graded Posets, arXiv preprint arXiv:1508.00318 [math.CO], 2015.
FORMULA
a(0) = 1, a(n) = 2^(n-1).
G.f.: (1 - x) / (1 - 2*x) = 1 / (1 - x / (1 - x)). - Michael Somos, Apr 18 2012
E.g.f.: cosh(z)*exp(z) = (exp(2*z) + 1)/2.
a(0) = 1 and for n>0, a(n) = sum of all previous terms.
a(n) = Sum_{k=0..n} binomial(n, 2*k). - Paul Barry, Feb 25 2003
a(n) = Sum_{k=0..n} binomial(n,k)*(1+(-1)^k)/2. - Paul Barry, May 27 2003
a(n) = floor((1+2^n)/2). - Toby Bartels (toby+sloane(AT)math.ucr.edu), Aug 27 2003
G.f.: Sum_{i>=0} x^i/(1-x)^i. - Jon Perry, Jul 10 2004
a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(k+1, n-k)*binomial(2*k, k). - Paul Barry, Mar 18 2005
a(n) = Sum_{k=0..floor(n/2)} A055830(n-k, k). - Philippe Deléham, Oct 22 2006
a(n) = Sum_{k=0..n} A098158(n,k). - Philippe Deléham, Dec 04 2006
G.f.: 1/(1 - (x + x^2 + x^3 + ...)). - Geoffrey Critzer, Aug 30 2008
a(n) = A000079(n) - A131577(n).
a(n) = A173921(A000079(n)). - Reinhard Zumkeller, Mar 04 2010
a(n) = Sum_{k=2^n..2^(n+1)-1} A093873(k)/A093875(k), sums of rows of the full tree of Kepler's harmonic fractions. - Reinhard Zumkeller, Oct 17 2010
E.g.f.: (exp(2*x)+1)/2 = (G(0) + 1)/2; G(k) = 1 + 2*x/(2*k+1 - x*(2*k+1)/(x + (k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Dec 03 2011
A051049(n) = p(n+1) where p(x) is the unique degree-n polynomial such that p(k) = a(k) for k = 0, 1, ..., n. - Michael Somos, Apr 18 2012
A008619(n) = p(-1) where p(x) is the unique degree-n polynomial such that p(k) = a(k) for k = 0, 1, ..., n. - Michael Somos, Apr 18 2012
INVERT transform is A122367. MOBIUS transform is A123707. EULER transform of A059966. PSUM transform is A000079. PSUMSIGN transform is A078008. BINOMIAL transform is A007051. REVERT transform is A105523. A002866(n) = a(n)*n!. - Michael Somos, Apr 18 2012
G.f.: U(0), where U(k) = 1 + x*(k+3) - x*(k+2)/U(k+1); (continued fraction, 1-step). - Sergei N. Gladkovskii, Oct 10 2012
a(n) = A000041(n) + A056823(n). - Omar E. Pol, Aug 31 2013
E.g.f.: E(0), where E(k) = 1 + x/( 2*k+1 - x/E(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Dec 25 2013
G.f.: 1 + x/(1 + x)*( 1 + 3*x/(1 + 3*x)*( 1 + 5*x/(1 + 5*x)*( 1 + 7*x/(1 + 7*x)*( 1 + ... )))). - Peter Bala, May 27 2017
a(n) = Sum_{k=0..2} stirling2(n, k).
G.f.: Sum_{j=0..k} A248925(k,j)*x^j / Product_{j=1..k} 1-j*x with k=2. - Robert A. Russell, Apr 25 2018
a(n) = A053120(n, n), n >= 0, (main diagonal of triangle of Chebyshev's T polynomials). - Wolfdieter Lang, Nov 26 2019
EXAMPLE
G.f. = 1 + x + 2*x^2 + 4*x^3 + 8*x^4 + 16*x^5 + 32*x^6 + 64*x^7 + 128*x^8 + ...
( -1 1 -1)
det ( 1 1 1) = 4
( -1 -1 -1)
MAPLE
A011782:= n-> ceil(2^(n-1)): seq(A011782(n), n=0..50); # Wesley Ivan Hurt, Feb 21 2015
with(PolynomialTools): A011782:=seq(coeftayl((1-x)/(1-2*x), x = 0, k), k=0..10^2); # Muniru A Asiru, Sep 26 2017
MATHEMATICA
f[s_] := Append[s, Ceiling[Plus @@ s]]; Nest[f, {1}, 32] (* Robert G. Wilson v, Jul 07 2006 *)
CoefficientList[ Series[(1-x)/(1-2x), {x, 0, 32}], x] (* Robert G. Wilson v, Jul 07 2006 *)
Table[Sum[StirlingS2[n, k], {k, 0, 2}], {n, 0, 30}] (* Robert A. Russell, Apr 25 2018 *)
Join[{1}, NestList[2#&, 1, 40]] (* Harvey P. Dale, Dec 06 2018 *)
PROG
(PARI) {a(n) = if( n<1, n==0, 2^(n-1))};
(PARI) Vec((1-x)/(1-2*x) + O(x^30)) \\ Altug Alkan, Oct 31 2015
(Magma) [Floor((1+2^n)/2): n in [0..35]]; // Vincenzo Librandi, Aug 21 2011
(Haskell)
a011782 n = a011782_list !! n
a011782_list = 1 : scanl1 (+) a011782_list
-- Reinhard Zumkeller, Jul 21 2013
(Sage) [sum(stirling_number2(n, j) for j in (0..2)) for n in (0..35)] # G. C. Greubel, Jun 02 2020
(Python)
def A011782(n): return 1 if n == 0 else 2**(n-1) # Chai Wah Wu, May 11 2022
CROSSREFS
Sequences with g.f.'s of the form ((1-x)/(1-2*x))^k: this sequence (k=1), A045623 (k=2), A058396 (k=3), A062109 (k=4), A169792 (k=5), A169793 (k=6), A169794 (k=7), A169795 (k=8), A169796 (k=9), A169797 (k=10).
Cf. A005418 (unoriented), A122746(n-3) (chiral), A016116 (achiral).
Row sums of triangle A100257.
A row of A160232.
Row 2 of A278984.
KEYWORD
nonn,nice,easy
AUTHOR
Lee D. Killough (killough(AT)wagner.convex.com)
EXTENSIONS
Additional comments from Emeric Deutsch, May 14 2001
Typo corrected by Philippe Deléham, Oct 25 2008
STATUS
approved
a(0)=0, a(1)=1, a(n) = n*2^(n-2) for n >= 2.
+10
46
0, 1, 2, 6, 16, 40, 96, 224, 512, 1152, 2560, 5632, 12288, 26624, 57344, 122880, 262144, 557056, 1179648, 2490368, 5242880, 11010048, 23068672, 48234496, 100663296, 209715200, 436207616, 905969664, 1879048192, 3892314112, 8053063680
OFFSET
0,3
COMMENTS
Number of states in the planning domain FERRY, when n-3 cars are at one of two shores while the (n-2)nd car may be on the ferry or at one of the shores.
If the ferry could board any number of cars (instead of only one), the number of states would form the Pisot sequence P(2,6) (A008776). In addition, if k shores existed, the sequence would form the Pisot sequence P(k,k(k+1)). This corresponds to the BRIEFCASE planning domain.
a(i) is the number of occurrences of the number 1 in all palindromic compositions of n = 2*(i+1). - Silvia Heubach (sheubac(AT)calstatela.edu), Jan 10 2003. E.g., there are 5 palindromic compositions of 6, namely 111111 11211 2112 1221 141, containing a total of 16 1's.
Number of occurrences of 00's in all circular binary words of length n. Example: a(3)=6 because in the circular binary words 000, 001, 010, 011, 100, 101, 110 and 111 we have a total of 3+1+1+0+1+0+0+0=6 occurrences of 00. a(n) = Sum_{k=0..n} k*A119458(n,k). - Emeric Deutsch, May 20 2006
a(n) is the number of permutations on [n] for which the entries of each left factor form a circular subinterval of [n]. A subset I of [n] forms a circular subinterval of [n] if it is an ordinary interval [a,b] or has the form [1,a]-union-[b,n] for 1 <= a < b <= n. For example, (5,4,2) is a left factor of the permutation (5,4,2,1,3) which does not form a circular subinterval of [5] and a(4)=16 counts all 24 permutations of [4] except the eight whose first two entries are 1,3 (in either order) or 2,4. - David Callan, Mar 30 2007
a(n) is the total number of runs in all Boolean (n-1)-strings. For example, the 8 Boolean 3-strings, 000, 001, 010, 011, 100, 101, 110, 111 have 1, 2, 3, 2, 2, 3, 2, 1 runs respectively. - David Callan, Jul 22 2008
From Gary W. Adamson, Jul 31 2010: (Start)
Starting with "1" = (1, 2, 4, 8, ...) convolved with (1, 0, 2, 4, 8, ...).
Example: a(6) = 96 = (32, 16, 8, 4, 2, 1) dot (1, 0, 2, 4, 8, 16) = (32 + 0 + 16 + 16 + 16, + 16) = 32 + 4*16 (End)
An elephant sequence, see A175654. For the corner squares 24 A[5] vectors, with decimal values between 27 and 432, lead to this sequence (without the leading 0). For the central square these vectors lead to the companion sequence A087447 (without the first leading 1). - Johannes W. Meijer, Aug 15 2010
Starting with 1 = (1, 1, 2, 4, 8, 16, ...) convolved with (1, 1, 3, 7, 15, 31, ...). - Gary W. Adamson, Oct 26 2010
a(n) is the number of ways to draw simple polygonal chains for n vertices lying on a circle. - Anton Zakharov, Dec 31 2016
Also the number of edges, maximal cliques, and maximum cliques in the n-folded cube graph for n > 3. - Eric W. Weisstein, Dec 01 2017 and Mar 21 2018
Number of pairs of compositions of n corresponding to a seaweed algebra of index n-2 for n > 2. - Nick Mayers, Jun 25 2018
Starting with 1, 2, 6, 16, ..., number of permutations of length n>0 avoiding the partially ordered pattern (POP) {1>2, 1>3} of length 4. That is, number of length n permutations having no subsequences of length 4 in which the first element is larger than the second and third elements. - Sergey Kitaev, Dec 08 2020
LINKS
O. Aichholzer, A. Asinowski, and T. Miltzow, Disjoint compatibility graph of non-crossing matchings of points in convex position, arXiv preprint arXiv:1403.5546 [math.CO], 2014.
A. Burstein, S. Kitaev, and T. Mansour, Partially ordered patterns and their combinatorial interpretations, PU. M. A. Vol. 19 (2008), No. 2-3, pp. 27-38.
P. Chinn, R. Grimaldi and S. Heubach, The frequency of summands of a particular size in Palindromic Compositions, Ars Combin. 69 (2003), 65-78.
Vincent Coll et al., Meander graphs and Frobenius seaweed Lie algebras II, Journal of Generalized Lie Theory and Applications 9.1 (2015).
Vladimir Dergachev and Alexandre Kirillov, Index of Lie algebras of seaweed type, J. Lie Theory 10.2 (2000): 331-343.
Alice L. L. Gao and Sergey Kitaev, On partially ordered patterns of length 4 and 5 in permutations, arXiv:1903.08946 [math.CO], 2019.
Alice L. L. Gao and Sergey Kitaev, On partially ordered patterns of length 4 and 5 in permutations, The Electronic Journal of Combinatorics 26(3) (2019), P3.26.
M. Ghallab et al., FERRY domain
M. Ghallab, A. Howe et al., PDDL - The Planning Domain Definition Language, Version 1.2, Technical Report CVC TR-98-003/DCS TR-1165. Yale Center for Computational Vision and Control, 1998.
Anna Khmelnitskaya, Gerard van der Laan, and Dolf Talmanm, The Number of Ways to Construct a Connected Graph: A Graph-Based Generalization of the Binomial Coefficients, J. Int. Seq. (2023) Art. 23.4.3. See p. 12.
Eric Weisstein's World of Mathematics, Folded Cube Graph
Eric Weisstein's World of Mathematics, Maximal Clique
Eric Weisstein's World of Mathematics, Maximum Clique
FORMULA
a(n) = ceiling(n*2^(n-2)).
Binomial transform of (0, 1, 0, 3, 0, 5, 0, 7, ...).
From Paul Barry, Apr 06 2003: (Start)
a(0)=0, a(n) = n*(0^(n-1) + 2^(n-1))/2, n > 0.
a(n) = Sum_{k=0..n} binomial(n, 2k+1)*(2k+1).
E.g.f.: x*exp(x)*cosh(x). (End)
The sequence 1, 1, 6, 16, ... is the binomial transform of A016813 with interpolated zeros. - Paul Barry, Jul 25 2003
For n > 1, a(n) = Sum_{k=0..n} (k-n/2)^2 C(n, k). (n+1)*a(n) = A001788(n). - Mario Catalani (mario.catalani(AT)unito.it), Nov 26 2003
From Paul Barry, May 07 2004: (Start)
a(n) = n*2^(n-2) - Sum_{k=0..n} binomial(n, k)*k*(-1)^k.
G.f.: x*(1-2*x+2*x^2)/(1-2*x)^2. (End)
a(n+1) = ceiling(binomial(n+1,1)*2^(n-1)). - Zerinvary Lajos, Nov 01 2006
a(n+1) = Sum_{k=0..n} A196389(n,k)*2^k. - Philippe Deléham, Oct 31 2011
a(0)=0, a(1)=1, a(2)=2, a(3)=6, a(n+1) = 4*a(n)-4*a(n-1) for n >= 3. - Philippe Deléham, Feb 20 2013
a(n) = A002064(n-1) - A002064(n-2), for n >= 2. - Ivan N. Ianakiev, Dec 29 2013
From Amiram Eldar, Aug 05 2020: (Start)
Sum_{n>=1} 1/a(n) = 4*log(2) - 1.
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(3/2) - 1. (End)
EXAMPLE
a(1)=6 because the palindromic compositions of n=4 are 4, 1+2+1, 1+1+1+1 and 2+2 and they contain 6 ones. - Silvia Heubach (sheubac(AT)calstatela.edu), Jan 10 2003
MATHEMATICA
Join[{0, 1}, Table[n 2^(n - 2), {n, 2, 30}]] (* Eric W. Weisstein, Dec 01 2017 *)
Join[{0, 1}, LinearRecurrence[{4, -4}, {2, 6}, 20]] (* Eric W. Weisstein, Dec 01 2017 *)
CoefficientList[Series[x (1 - 2 x + 2 x^2)/(1 - 2 x)^2, {x, 0, 20}], x] (* Eric W. Weisstein, Dec 01 2017 *)
PROG
(Magma) [Ceiling(n*2^(n-2)) : n in [0..40]]; // Vincenzo Librandi, Sep 22 2011
(PARI) a(n)=ceil(n*2^(n-2)) \\ Charles R Greathouse IV, Oct 31 2011
(PARI) x='x+O('x^50); concat(0, Vec(x*(1-2*x+2*x^2)/(1-2*x)^2)) \\ Altug Alkan, Nov 01 2015
CROSSREFS
Pisot sequence P(2, 6) (A008776), Pisot sequence P(k, k(k+1))
Cf. A119458.
KEYWORD
easy,nonn
AUTHOR
Bernhard Wolf (wolf(AT)cs.tu-berlin.de), Oct 24 2000
STATUS
approved
a(n) = 2^n*C(n+6,6). Number of 6D hypercubes in an (n+6)-dimensional hypercube.
(Formerly M4939 N1668)
+10
21
1, 14, 112, 672, 3360, 14784, 59136, 219648, 768768, 2562560, 8200192, 25346048, 76038144, 222265344, 635043840, 1778122752, 4889837568, 13231325184, 35283533824, 92851404800, 241413652480, 620777963520, 1580162088960
OFFSET
0,2
COMMENTS
If X_1,X_2,...,X_n is a partition of a 2n-set X into 2-blocks then, for n>5, a(n-6) is equal to the number of (n+6)-subsets of X intersecting each X_i (i=1,2,...,n). - Milan Janjic, Jul 21 2007
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Herbert Izbicki, Über Unterbaeume eines Baumes, Monatshefte für Mathematik, Vol. 74 (1970), pp. 56-62.
Herbert Izbicki, Über Unterbaeume eines Baumes, Monatshefte für Mathematik, Vol. 74 (1970), pp. 56-62.
Milan Janjic and Boris Petkovic, A Counting Function, arXiv:1301.4550 [math.CO], 2013.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992, arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
Index entries for linear recurrences with constant coefficients, signature (14,-84,280,-560,672,-448,128).
FORMULA
G.f.: 1/(1-2*x)^7.
a(n) = 2*a(n-1) + A054849(n-1).
For n>0, a(n) = 2*A082140(n).
a(n) = Sum_{i=6..n+6} binomial(i,6)*binomial(n+6,i). Example: for n=5, a(5) = 1*462 + 7*330 + 28*165 + 84*55 + 210*11 + 462*1 = 14784. - Bruno Berselli, Mar 23 2018
From Amiram Eldar, Jan 06 2022: (Start)
Sum_{n>=0} 1/a(n) = 47/5 - 12*log(2).
Sum_{n>=0} (-1)^n/a(n) = 2916*log(3/2) - 5907/5. (End)
MAPLE
A002409:=-1/(2*z-1)**7; # Simon Plouffe in his 1992 dissertation
seq(binomial(n+6, 6)*2^n, n=0..22); # Zerinvary Lajos, Jun 16 2008
MATHEMATICA
CoefficientList[Series[1/(1-2x)^7, {x, 0, 40}], x] (* or *) LinearRecurrence[ {14, -84, 280, -560, 672, -448, 128}, {1, 14, 112, 672, 3360, 14784, 59136}, 40] (* Harvey P. Dale, Jan 24 2022 *)
PROG
(Magma) [2^n*Binomial(n+6, 6): n in [0..30]]; // Vincenzo Librandi, Oct 14 2011
CROSSREFS
First differences are in A006976.
a(n) = A038207(n+6,6).
KEYWORD
nonn,easy
EXTENSIONS
More terms from Henry Bottomley and James A. Sellers, Apr 15 2000
Typo in definition corrected by Zerinvary Lajos, Jun 16 2008
STATUS
approved
Square array of transforms of binomial coefficients, read by antidiagonals.
+10
14
1, 1, 1, 1, 2, 2, 1, 3, 6, 4, 1, 4, 12, 16, 8, 1, 5, 20, 40, 40, 16, 1, 6, 30, 80, 120, 96, 32, 1, 7, 42, 140, 280, 336, 224, 64, 1, 8, 56, 224, 560, 896, 896, 512, 128, 1, 9, 72, 336, 1008, 2016, 2688, 2304, 1152, 256, 1, 10, 90, 480, 1680, 4032, 6720, 7680, 5760, 2560, 512
OFFSET
0,5
COMMENTS
Rows are associated with the expansions of (x^k/k!)exp(x)cosh(x) (leading zeros dropped). Rows include A011782, A057711, A080929, A082138, A080951, A082139, A082140, A082141. Columns are of the form 2^(k-1)C(n+k, k). Diagonals include A069723, A082143, A082144, A082145, A069720.
T(n, k) is also the number of idempotent order-preserving and order-decreasing partial transformations (of an n-chain) of width k (width(alpha)= |Dom(alpha)|). - Abdullahi Umar, Oct 02 2008
Read as a triangle this is A119468 with rows reversed. A119468 has e.g.f. exp(z*x)/(1-tanh(x)). - Peter Luschny, Aug 01 2012
Read as a triangle this is a subtriangle of A198793. - Philippe Deléham, Nov 10 2013
LINKS
Laradji, A. and Umar, A. Combinatorial results for semigroups of order-preserving partial transformations, Journal of Algebra 278, (2004), 342-359.
Laradji, A. and Umar, A. Combinatorial results for semigroups of order-decreasing partial transformations, J. Integer Seq. 7 (2004), 04.3.8.
FORMULA
Square array defined by T(n, k)=(2^(n-1)+0^n/2)C(n + k, n)= Sum{k=0..n, C(n+k, k+j)C(k+j, k)(1+(-1)^j)/2 }.
As an infinite lower triangular matrix, equals A007318 * A134309. - Gary W. Adamson, Oct 19 2007
O.g.f. for array read as a triangle: (1-x*(1+t))/((1-x)*(1-x*(1+2*t))) = 1 + x*(1+t) + x^2*(1+2*t+2*t^2) + x^3*(1+3*t+6*t^2+4*t^3) + .... - Peter Bala, Apr 26 2012
For array read as a triangle: T(n,k) = 2*T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k) -2*T(n-2,k-1), T(0,0) = T(1,0) = T(1,1) = 1, T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Nov 10 2013
EXAMPLE
Rows begin
1 1 2 4 8 ...
1 2 6 16 40 ...
1 3 12 40 120 ...
1 4 20 80 280 ...
1 5 30 140 560 ...
Read as a triangle, this begins:
1
1, 1
1, 2, 2
1, 3, 6, 4
1, 4, 12, 16, 8
1, 5, 20, 40, 40, 16
1, 6, 30, 80, 120, 96, 32
... - Philippe Deléham, Nov 10 2013
MAPLE
# As a triangular array:
T := (n, k) -> 2^(k+0^k-1)*binomial(n, k):
for n from 0 to 9 do seq(T(n, k), k=0..n) od; # Peter Luschny, Nov 10 2017
MATHEMATICA
rows = 11; t[n_, k_] := 2^(n-1)*(n+k)!/(n!*k!); t[0, _] = 1; tkn = Table[ t[n, k], {k, 0, rows}, {n, 0, rows}]; Flatten[ Table[ tkn[[ n-k+1, k ]], {n, 1, rows}, {k, 1, n}]] (* Jean-François Alcover, Jan 20 2012 *)
PROG
(Sage)
def A082137_row(n) : # as a triangular array
var('z')
s = (exp(z*x)/(1-tanh(x))).series(x, n+2)
t = factorial(n)*s.coefficient(x, n)
return [t.coefficient(z, n-k) for k in (0..n)]
for n in (0..7) : print(A082137_row(n)) # Peter Luschny, Aug 01 2012
CROSSREFS
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Apr 06 2003
STATUS
approved
Sequence associated with a(n) = 2*a(n-1) + k*(k+2)*a(n-2).
+10
12
1, 3, 12, 40, 120, 336, 896, 2304, 5760, 14080, 33792, 79872, 186368, 430080, 983040, 2228224, 5013504, 11206656, 24903680, 55050240, 121110528, 265289728, 578813952, 1258291200, 2726297600, 5888802816, 12683575296, 27246198784
OFFSET
0,2
COMMENTS
The third column of number triangle A080928.
FORMULA
G.f.: (1-x)*(1-2*x+4*x^2)/(1-2*x)^3.
For n>0, a(n) = (n+1)*(n+2)*2^(n-2). - Ralf Stephan, Jan 16 2004
a(n) = Sum_{k=0..n} Sum_{i=0..n} (k+1)*binomial(n-1,i). - Wesley Ivan Hurt, Sep 20 2017
From Amiram Eldar, Jan 07 2022: (Start)
Sum_{n>=0} 1/a(n) = 7 - 8*log(2).
Sum_{n>=0} (-1)^n/a(n) = 24*log(3/2) - 9. (End)
MAPLE
[seq (ceil(binomial(n+2, 2)*2^(n-1)), n=0..30)]; # Zerinvary Lajos, Nov 01 2006
MATHEMATICA
CoefficientList[Series[(1-x)(1-2x+4x^2)/(1-2x)^3, {x, 0, 30}], x] (* Michael De Vlieger, Sep 21 2017 *)
Join[{1}, LinearRecurrence[{6, -12, 8}, {3, 12, 40}, 30]] (* G. C. Greubel, Jul 23 2019 *)
PROG
(Magma) [n eq 0 select 1 else (n+1)*(n+2)*2^(n-2): n in [0..30]]; // Vincenzo Librandi, Sep 22 2011
(PARI) vector(30, n, n--; if(n==0, 1, 2^(n-1)*binomial(n+2, 2) )) \\ G. C. Greubel, Jul 23 2019
(Sage) [1]+[2^(n-1)*binomial(n+2, 2) for n in (1..30)] # G. C. Greubel, Jul 23 2019
(GAP) Concatenation([1], List([1..30], n-> 2^(n-1)*Binomial(n+2, 2))); # G. C. Greubel, Jul 23 2019
CROSSREFS
Essentially the same as A052482.
KEYWORD
nonn,easy
AUTHOR
Paul Barry, Feb 26 2003
STATUS
approved
A transform of binomial(n,5).
+10
11
1, 6, 42, 224, 1008, 4032, 14784, 50688, 164736, 512512, 1537536, 4472832, 12673024, 35094528, 95256576, 254017536, 666796032, 1725825024, 4410441728, 11142168576, 27855421440, 68975329280, 169303080960, 412216197120
OFFSET
0,2
COMMENTS
Sixth row of number array A082137. C(n,5) has e.g.f. (x^5/5!)exp(x). The transform averages the binomial and inverse binomial transforms.
LINKS
FORMULA
Equals 2 * A080952.
a(n) = (2^(n-1) + 0^n/2)*C(n+5, n).
a(n) = Sum_{j=0..n} C(n+5, j+5)*C(j+5, 5)*(1+(-1)^j)/2.
G.f.: (1 -6*x +30*x^2 -80*x^3 +120*x^4 -96*x^5 +32*x^6)/(1-2*x)^6.
E.g.f.: x^5*exp(x)*cosh(x)/5! (preceded by 5 zeros).
a(n) = ceiling(binomial(n+5,5)*2^(n-1)). - Zerinvary Lajos, Nov 01 2006
From Amiram Eldar, Jan 07 2022: (Start)
Sum_{n>=0} 1/a(n) = 20*log(2) - 38/3.
Sum_{n>=0} (-1)^n/a(n) = 1620*log(3/2) - 656. (End)
EXAMPLE
a(0) = (2^(-1) + 0^0/2)*binomial(5,0) = 2*(1/2) = 1 (use 0^0 = 1).
MAPLE
[seq (ceil(binomial(n+5, 5)*2^(n-1)), n=0..23)]; # Zerinvary Lajos, Nov 01 2006
MATHEMATICA
Drop[With[{nmax = 56}, CoefficientList[Series[x^5*Exp[x]*Cosh[x]/5!, {x, 0, nmax}], x]*Range[0, nmax]!], 5] (* or *) Join[{1}, Table[2^(n-1)* Binomial[n+5, n], {n, 1, 30}] (* G. C. Greubel, Feb 05 2018 *)
PROG
(Magma) [(Ceiling(Binomial(n+5, 5)*2^(n-1))) : n in [0..30]]; // Vincenzo Librandi, Sep 22 2011
(PARI) my(x='x+O('x^30)); Vec(serlaplace(x^5*exp(x)*cosh(x)/5!)) \\ G. C. Greubel, Feb 05 2018
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Apr 06 2003
STATUS
approved
A transform of C(n,3).
+10
10
1, 4, 20, 80, 280, 896, 2688, 7680, 21120, 56320, 146432, 372736, 931840, 2293760, 5570560, 13369344, 31752192, 74711040, 174325760, 403701760, 928514048, 2122317824, 4823449600, 10905190400, 24536678400, 54962159616, 122607894528
OFFSET
0,2
COMMENTS
Fourth row of number array A082137. C(n,3) has e.g.f. (x^3/3!)exp(x). The transform averages the binomial and inverse binomial transforms.
FORMULA
a(n) = (2^(n-1) + 0^n/2)*C(n+3, n).
a(n) = Sum_{j=0..n} C(n+3, j+3)*C(j+3, 3)*(1 + (-1)^j)/2.
G.f.: (1 - 4*x + 12*x^2 - 16*x^3 + 8*x^4)/(1-2*x)^4.
E.g.f.: (x^3/3!)*exp(x)*cosh(x) (preceded by 3 zeros).
a(n) = ceiling(binomial(n+3,3)*2^(n-1)). - Zerinvary Lajos, Nov 01 2006
From Amiram Eldar, Jan 07 2022: (Start)
Sum_{n>=0} 1/a(n) = 12*log(2) - 7.
Sum_{n>=0} (-1)^n/a(n) = 108*log(3/2) - 43. (End)
EXAMPLE
a(0) = (2^(-1) + 0^0/2)*C(3,0) = 2*(1/2) = 1 (using 0^0=1).
MAPLE
[seq (ceil(binomial(n+3, 3)*2^(n-1)), n=0..30)]; # Zerinvary Lajos, Nov 01 2006
MATHEMATICA
Join[{1}, LinearRecurrence[{8, -24, 32, -16}, {4, 20, 80, 280}, 30]] (* G. C. Greubel, Jul 23 2019 *)
PROG
(Magma) [(Ceiling(Binomial(n+3, 3)*2^(n-1))) : n in [0..30]]; // Vincenzo Librandi, Sep 22 2011
(PARI) my(x='x+O('x^30)); Vec((1-4*x+12*x^2-16*x^3 + 8*x^4)/(1-2*x)^4) \\ G. C. Greubel, Jul 23 2019
(Sage) ((1-4*x+12*x^2-16*x^3+8*x^4)/(1-2*x)^4).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jul 23 2019
(GAP) a:=[4, 20, 80, 280];; for n in [5..30] do a[n]:=8*a[n-1]-24*a[n-2] +32*a[n-3]-16*a[n-4]; od; Concatenation([1], a);
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Apr 06 2003
STATUS
approved
A transform of C(n,7).
+10
10
1, 8, 72, 480, 2640, 12672, 54912, 219648, 823680, 2928640, 9957376, 32587776, 103194624, 317521920, 952565760, 2794192896, 8033304576, 22682271744, 63006310400, 172438323200, 465583472640, 1241555927040, 3273192898560
OFFSET
0,2
COMMENTS
Eighth row of number array A082137. C(n,7) has e.g.f. (x^7/7!)exp(x). The transform averages the binomial and inverse binomial transforms.
LINKS
Index entries for linear recurrences with constant coefficients, signature (16,-112,448,-1120,1792,-1792, 1024,-256).
FORMULA
a(n) = (2^(n-1) + 0^n/2)*C(n+7,n).
a(n) = Sum_{j=0..n} C(n+7, j+7)*C(j+7, 7)*(1+(-1)^j)/2.
G.f.: (1 - 8*x + 56*x^2 - 224*x^3 + 560*x^4 - 896*x^5 + 896*x^6 - 512*x^7 + 128*x^8)/(1-2*x)^8.
E.g.f.: (x^7/7!)*exp(x)*cosh(x) (with 7 leading zeros).
a(n) = ceiling(binomial(n+7,7)*2^(n-1)). - Zerinvary Lajos, Nov 01 2006
From Amiram Eldar, Jan 07 2022: (Start)
Sum_{n>=0} 1/a(n) = 28*log(2) - 274/15.
Sum_{n>=0} (-1)^n/a(n) = 20412*log(3/2) - 124132/15. (End)
EXAMPLE
a(0) = (2^(-1) + 0^0/2)*C(7,0) = 2*(1/2) = 1 (using 0^0=1).
MAPLE
[seq (ceil(binomial(n+7, 7)*2^(n-1)), n=0..22)]; # Zerinvary Lajos, Nov 01 2006
MATHEMATICA
Drop[With[{nmax = 50}, CoefficientList[Series[x^7*Exp[x]*Cosh[x]/7!, {x, 0, nmax}], x]*Range[0, nmax]!], 5] (* or *) Join[{1}, Table[2^(n-1)* Binomial[n+7, n], {n, 1, 30}] (* G. C. Greubel, Feb 05 2018 *)
PROG
(PARI) my(x='x+O('x^30)); Vec(serlaplace(x^7*exp(x)*cosh(x)/7!)) \\ G. C. Greubel, Feb 05 2018
(Magma) [(2^(n-1) + 0^n/2)*Binomial(n+7, n): n in [0..30]]; // G. C. Greubel, Feb 05 2018
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Apr 06 2003
STATUS
approved
Sequence associated with recurrence a(n) = 2*a(n-1) + k*(k+2)*a(n-2).
+10
9
1, 5, 30, 140, 560, 2016, 6720, 21120, 63360, 183040, 512512, 1397760, 3727360, 9748480, 25067520, 63504384, 158760960, 392232960, 958791680, 2321285120, 5571084288, 13264486400, 31352422400, 73610035200, 171756748800
OFFSET
0,2
COMMENTS
Fifth column of triangle A080928.
FORMULA
G.f.: (1-x)*(1 - 4*x + 16*x^2 - 24*x^3 + 16*x^4)/(1-2*x)^5.
a(n) = ceiling(binomial(n+4,4)*2^(n-1)). - Zerinvary Lajos, Nov 01 2006
From Amiram Eldar, Jan 07 2022: (Start)
Sum_{n>=0} 1/a(n) = 37/3 - 16*log(2).
Sum_{n>=0} (-1)^n/a(n) = 432*log(3/2) - 523/3. (End)
MAPLE
[seq( ceil(binomial(n+4, 4)*2^(n-1)), n=0..30)]; # Zerinvary Lajos, Nov 01 2006
MATHEMATICA
Join[{1}, LinearRecurrence[{10, -40, 80, -80, 32}, {5, 30, 140, 560, 2016}, 30]] (* G. C. Greubel, Jul 23 2019 *)
PROG
(Magma) [(Ceiling(Binomial(n+4, 4)*2^(n-1))) : n in [0..30]]; // Vincenzo Librandi, Sep 22 2011
(PARI) my(x='x+O('x^30)); Vec((1-x)*(1-4*x+16*x^2-24*x^3 +16*x^4)/(1 -2*x)^5) \\ G. C. Greubel, Jul 23 2019
(Sage) ((1-x)*(1-4*x+16*x^2-24*x^3+16*x^4)/(1-2*x)^5).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jul 23 2019
(GAP) a:=[5, 30, 140, 560, 2016];; for n in [6..30] do a[n]:=10*a[n-1] -40*a[n-2]+80*a[n-3]-80*a[n-4]+32*a[n-5]; od; Concatenation([1], a); # G. C. Greubel, Jul 23 2019
KEYWORD
nonn,easy
AUTHOR
Paul Barry, Feb 26 2003
STATUS
approved
Triangle T(n,k), read by rows, given by (0,1,1,0,0,0,0,0,0,0,...) DELTA (1,0,0,1,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938.
+10
2
1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 4, 6, 3, 1, 0, 8, 16, 12, 4, 1, 0, 16, 40, 40, 20, 5, 1, 0, 32, 96, 120, 80, 30, 6, 1, 0, 64, 224, 336, 280, 140, 42, 7, 1, 0, 128, 512, 896, 896, 560, 224, 56, 8, 1, 0, 256, 1152, 2304, 2688, 2016, 1008, 336, 72, 9, 1
OFFSET
0,8
COMMENTS
Row sums are A124302.
Variant of A119468.
FORMULA
T(n,k) = A097805(n,k)*A011782(n-k).
Sum_{0<=k<=n} T(n,k)*2^k = A063376(n-1).
G.f.: (1-(y+2)*x+y*x^2)/((1-x*y)*(1-x*(y+2))).
T(n,k) = 2*T(n-1,k) + 2*T(n-1,k-1) - 2*T(n-2,k-1) - T(n-2,k-2) for n>2, T(0,0) = T(1,1) = T(2,2) = T(2,1) = 1, T(1,0) = T(2,0) = 0, T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Nov 10 2013
EXAMPLE
Triangle begins :
1
0, 1
0, 1, 1
0, 2, 2, 1
0, 4, 6, 3, 1
0, 8, 16, 12, 4, 1
0, 16, 40, 40, 20, 5, 1
KEYWORD
easy,nonn,tabl
AUTHOR
Philippe Deléham, Oct 30 2011
STATUS
approved

Search completed in 0.016 seconds