[go: up one dir, main page]

login
Search: a089437 -id:a089437
     Sort: relevance | references | number | modified | created      Format: long | short | data
Numbers k such that 4^k + 13 is prime.
+10
8
1, 2, 4, 10, 19, 32, 40, 146, 566, 2054, 9967, 62639, 87814, 141092
OFFSET
1,2
COMMENTS
Numbers of the form 4^n+k (for n>0) are never primes when k is even (obviously) or when k == -1 (mod 6): in the last case, in fact, (3+1)^n + 6*h-1 is divisible by 3. - Bruno Berselli, Oct 06 2015
FORMULA
a(n) = A102634(n)/2. - Elmo R. Oliveira, Nov 12 2023
MATHEMATICA
Select[Range[4000], PrimeQ[4^# + 13] &]
PROG
(Magma) [n: n in [0..2000] | IsPrime(4^n+13)];
(PARI) is(n)=ispseudoprime(4^n+13) \\ Charles R Greathouse IV, Feb 17 2017
CROSSREFS
Cf. A104067.
Cf. Numbers k such that 4^k + d is prime: A089437 (d=3), A217349 (d=7), A217350 (d=9), this sequence (d=13), A253773 (d=15), A253774 (d=19), A262345 (d=21), A204388 (d=25), A262969 (d=27), A262971 (d=31), A262972 (d=33).
KEYWORD
nonn,more
AUTHOR
Vincenzo Librandi, Jan 12 2015
EXTENSIONS
a(11)-a(14) derived from A102634 by Robert Price, Sep 06 2015
STATUS
approved
Numbers n such that 8^n + 3 is prime.
+10
6
1, 2, 4, 5, 6, 10, 28, 76, 130, 370, 568, 713, 789, 790, 1334, 1354, 1849, 2913, 5729, 5740, 5978, 6908, 10618, 11918, 12748, 13449, 40850, 68654, 78442, 121040, 159948, 228526
OFFSET
1,2
COMMENTS
3*A217354 is a subsequence of A057732. - Bruno Berselli, Oct 02 2012
MATHEMATICA
Select[Range[5000], PrimeQ[8^# + 3] &]
PROG
(PARI) is(n)=ispseudoprime(8^n+3) \\ Charles R Greathouse IV, Feb 17 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Vincenzo Librandi, Oct 02 2012
EXTENSIONS
a(19)-a(32) are obtained from A057732; by Bruno Berselli, Oct 02 2012
STATUS
approved
Primes of the form 4^k + 3.
+10
5
7, 19, 67, 4099, 65539, 262147, 268435459, 1073741827, 19342813113834066795298819
OFFSET
1,1
LINKS
FORMULA
a(n) = 4^A089437(n) + 3. - Elmo R. Oliveira, Nov 14 2023
EXAMPLE
67 is a term because 4^3 + 3 = 67 is prime.
MATHEMATICA
Select[Table[4^n + 3, {n, 0, 200}], PrimeQ]
PROG
(Magma) [a: n in [0..200] | IsPrime(a) where a is 4^n+3];
CROSSREFS
Cf. A089437 (associated k).
Cf. Primes of the form r^k + h: A092506 (r=2, h=1), A057733 (r=2, h=3), A123250 (r=2, h=5), A104066 (r=2, h=7), A104070 (r=2, h=9), A057735 (r=3, h=2), A102903 (r=3, h=4), A102870 (r=3, h=8), A102907 (r=3, h=10), A290200 (r=4, h=1), this sequence (r=4, h=3), A228027 (r=4, h=9), A182330 (r=5, h=2), A228029 (r=5, h=6), A102910 (r=5, h=8), A182331 (r=6, h=1), A104118 (r=6, h=5), A104115 (r=6, h=7), A104065 (r=7, h=4), A228030 (r=7, h=6), A228031 (r=7, h=10), A228032 (r=8, h=3), A228033 (r=8, h=5), A144360 (r=8, h=7), A145440 (r=8, h=9), A228034 (r=9, h=2), A159352 (r=10, h=3), A159031 (r=10, h=7).
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Aug 11 2013
EXTENSIONS
Cross-references corrected by Robert Price, Aug 01 2017
STATUS
approved
Numbers k such that 4^k + 7 is prime.
+10
3
1, 2, 3, 4, 5, 8, 9, 10, 14, 15, 19, 22, 39, 44, 49, 63, 80, 87, 102, 107, 294, 305, 399, 463, 595, 599, 903, 944, 1324, 1727, 1755, 1932, 1935, 4485, 6165, 6665, 9438, 11169, 19859, 27503, 55392, 86235, 98217, 117855, 123640, 134204, 139660, 150437, 157634, 186475, 236129, 283248, 390142, 410178
OFFSET
1,2
COMMENTS
The next terms are > 4.1*10^5. - Elmo R. Oliveira, Nov 29 2023
FORMULA
a(n) = A057195(n)/2.
EXAMPLE
For k = 14, 4^14 + 7 = 268435463 is prime.
MATHEMATICA
Select[Range[0, 5000], PrimeQ[4^# + 7] &]
PROG
(PARI) is(n)=ispseudoprime(4^n+7) \\ Charles R Greathouse IV, Jun 06 2017
CROSSREFS
Cf. A057195, A059266, A089437, A104066 (associated primes).
KEYWORD
nonn
AUTHOR
Vincenzo Librandi, Oct 01 2012
EXTENSIONS
Extended using A057195 terms by Michel Marcus, Aug 28 2015
a(51)-a(54) derived from A057195 by Elmo R. Oliveira, Nov 29 2023
STATUS
approved
Numbers k such that 4^k + 9 is prime.
+10
2
1, 3, 5, 9, 15, 33, 41, 335, 443, 671, 1197, 1355, 2247, 2639, 117293, 191099
OFFSET
1,2
COMMENTS
The next terms are > 250000. - Robert Price, Oct 05 2015
Contains exactly the halved even terms of A057196.
EXAMPLE
For k = 15, 4^15 + 9 = 1073741833 is prime.
MATHEMATICA
Select[Range[0, 5000], PrimeQ[4^# + 9] &]
PROG
(Magma) [n: n in [0..700] | IsPrime(4^n+9)]; // Vincenzo Librandi, Oct 06 2015
(PARI) is(n)=ispseudoprime(4^n+9) \\ Charles R Greathouse IV, Jun 06 2017
CROSSREFS
Cf. A057196, A089437 (similar sequence).
KEYWORD
nonn,more
AUTHOR
Vincenzo Librandi, Oct 01 2012
EXTENSIONS
a(15)-a(16) derived from A057196 by Robert Price, Oct 05 2015
STATUS
approved
Smallest k >= 1 such that (n-1)*n^k + 1 is prime.
+10
1
1, 1, 1, 2, 1, 1, 2, 1, 3, 10, 3, 1, 2, 1, 1, 4, 1, 29, 14, 1, 1, 14, 2, 1, 2, 4, 1, 2, 4, 5, 12, 2, 1, 2, 2, 9, 16, 1, 2, 80, 1, 2, 4, 2, 3, 16, 2, 2, 2, 1, 15, 960, 15, 1, 4, 3, 1, 14, 1, 6, 20, 1, 3, 946, 6, 1, 18, 10, 1, 4, 1, 5, 42, 4, 1, 828, 1, 1, 2, 1, 12, 2, 6, 4, 30, 3, 3022, 2, 1, 1
OFFSET
2,4
COMMENTS
a(prime(j)) + 1 = A087139(j).
a(123) > 10^5, a(342) > 10^5, see the Barnes link for the Sierpinski base-123 and base-342 problems.
a(251) > 73000, see A087139.
PROG
(PARI) a(n)=for(k=1, 2^16, if(ispseudoprime((n-1)*n^k+1), return(k)))
CROSSREFS
For the numbers k such that these forms are prime:
a1(b): numbers k such that (b-1)*b^k-1 is prime
a2(b): numbers k such that (b-1)*b^k+1 is prime
a3(b): numbers k such that (b+1)*b^k-1 is prime
a4(b): numbers k such that (b+1)*b^k+1 is prime (no such k exists when b == 1 (mod 3))
a5(b): numbers k such that b^k-(b-1) is prime
a6(b): numbers k such that b^k+(b-1) is prime
a7(b): numbers k such that b^k-(b+1) is prime
a8(b): numbers k such that b^k+(b+1) is prime (no such k exists when b == 1 (mod 3)).
Using "-------" if there is currently no OEIS sequence and "xxxxxxx" if no such k exists (this occurs only for a4(b) and a8(b) for b == 1 (mod 3)):
.
b a1(b) a2(b) a3(b) a4(b) a5(b) a6(b) a7(b) a8(b)
--------------------------------------------------------------------
4 A272057 ------- ------- xxxxxxx A059266 A089437 A217348 xxxxxxx
7 A046866 A245241 ------- xxxxxxx A191469 A217130 A217131 xxxxxxx
11 A046867 A057462 ------- ------- ------- ------- ------- -------
12 A079907 A251259 ------- ------- ------- A137654 ------- -------
13 A297348 ------- ------- xxxxxxx ------- ------- ------- xxxxxxx
14 A273523 ------- ------- ------- ------- ------- ------- -------
15 ------- ------- ------- ------- ------- ------- ------- -------
16 ------- ------- ------- xxxxxxx ------- ------- ------- xxxxxxx
Cf. (smallest k such that these forms are prime) A122396 (a1(b)+1 for prime b), A087139 (a2(b)+1 for prime b), A113516 (a5(b)), A076845 (a6(b)), A178250 (a7(b)).
KEYWORD
nonn
AUTHOR
Eric Chen, Jun 04 2018
STATUS
approved

Search completed in 0.009 seconds