[go: up one dir, main page]

login
Search: a086058 -id:a086058
     Sort: relevance | references | number | modified | created      Format: long | short | data
Decimal expansion of Sierpiński's constant.
+10
11
2, 5, 8, 4, 9, 8, 1, 7, 5, 9, 5, 7, 9, 2, 5, 3, 2, 1, 7, 0, 6, 5, 8, 9, 3, 5, 8, 7, 3, 8, 3, 1, 7, 1, 1, 6, 0, 0, 8, 8, 0, 5, 1, 6, 5, 1, 8, 5, 2, 6, 3, 0, 9, 1, 7, 3, 2, 1, 5, 4, 4, 9, 8, 7, 9, 7, 1, 9, 3, 2, 0, 4, 4, 0, 0, 1, 1, 5, 7, 1, 2, 0, 2, 1, 1, 1, 1, 7, 7, 2, 4, 5, 2, 7, 0, 6, 4, 2, 8, 3, 0, 3, 1, 3, 4
OFFSET
1,1
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 122-126.
LINKS
Steven R. Finch, Sierpinski's Constant. [Broken link]
Steven R. Finch, Sierpinski's Constant. [From the Wayback machine]
Eric Weisstein's World of Mathematics, Sierpiński Constant.
FORMULA
Equals -Pi*log(Pi)+2*Pi*gamma+4*Pi*log(GAMMA(3/4)).
Equals Pi*A241017. - Eric W. Weisstein, Dec 10 2014
Equals Pi*(A086058-1). - Eric W. Weisstein, Dec 10 2014
Equals lim_{n->oo} (A004018(n)/n - Pi*log(n)). - Amiram Eldar, Apr 15 2021
EXAMPLE
2.5849817595792532170658935873831711600880516518526309173215...
MATHEMATICA
K=-Pi Log[Pi]+2 Pi EulerGamma+4 Pi Log[Gamma[3/4]]; First@RealDigits[N[K, 105]](* Ant King, Mar 02 2013 *)
PROG
(PARI) -Pi*log(Pi)+2*Pi*Euler+4*Pi*log(gamma(3/4))
(PARI) { default(realprecision, 5080); x=-Pi*log(Pi)+2*Pi*Euler+4*Pi*log(gamma(3/4)); for (n=1, 5000, d=floor(x); x=(x-d)*10; write("b062089.txt", n, " ", d)) } \\ Harry J. Smith, Aug 01 2009
CROSSREFS
KEYWORD
cons,easy,nonn
AUTHOR
Jason Earls, Jun 27 2001
STATUS
approved
Decimal expansion of Sierpiński's S~ (S "tilde" as named by S. Finch), a constant appearing in the asymptotics of the number of representations of a positive integer as a sum of two squares.
+10
2
2, 0, 1, 6, 6, 2, 1, 5, 4, 5, 7, 3, 3, 4, 0, 8, 1, 1, 5, 2, 6, 2, 7, 9, 6, 8, 5, 9, 7, 1, 5, 1, 1, 5, 4, 2, 6, 4, 5, 0, 1, 8, 4, 1, 7, 7, 5, 2, 3, 6, 4, 7, 4, 8, 0, 6, 1, 0, 9, 1, 9, 2, 8, 3, 4, 4, 7, 8, 1, 4, 3, 4, 1, 6, 1, 6, 1, 8, 2, 7, 8, 7, 2, 5, 5, 4, 1, 3, 5, 1, 3, 9, 8, 3, 0, 6, 1, 8, 0, 4
OFFSET
1,1
COMMENTS
From Vaclav Kotesovec, Mar 10 2023: (Start)
Sum_{k=1..n} A002654(k)^2 ~ n * (log(n) + C) / 4, where C = A241011 =
4*gamma - 1 + log(2)/3 - 2*log(Pi) + 8*log(Gamma(3/4)) - 12*Zeta'(2)/Pi^2 = 2.01662154573340811526279685971511542645018417752364748061...
The constant C, published by Ramanujan (1916, formula (22)), 4*gamma - 1 + log(2)/3 - log(Pi) + 4*log(Gamma(3/4)) - 12*Zeta'(2)/Pi^2 = 2.3482276258576268... is wrong! (End)
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.10 Sierpinski's constant, p. 122.
LINKS
Steven R. Finch, Errata and Addenda to Mathematical Constants, Section 2.10 p. 17.
Srinivasa Ramanujan, Some formulas in the analytic theory of numbers, Messenger of Mathematics, XLV, 1916, 81-84, section (K), formula (22).
FORMULA
S_tilde = 2*S - 12/Pi^2*zeta'(2) + log(2)/3 - 1, where S = A086058 - 1 = A062089 / Pi.
EXAMPLE
2.01662154573340811526279685971511542645018417752364748061...
MATHEMATICA
S = 2*EulerGamma + 2*Log[2] + 3*Log[Pi] - 4* Log[Gamma[1/4]]; (* S~ *) St = 2*S - 12/Pi^2*Zeta'[2] + Log[2]/3 - 1; RealDigits[St, 10, 100] // First
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
STATUS
approved
Decimal expansion of Sierpiński's S constant, which appears in a series involving the function r(n), defined as the number of representations of the positive integer n as a sum of two squares. This S constant is the usual Sierpiński K constant divided by Pi.
+10
2
8, 2, 2, 8, 2, 5, 2, 4, 9, 6, 7, 8, 8, 4, 7, 0, 3, 2, 9, 9, 5, 3, 2, 8, 7, 1, 6, 2, 6, 1, 4, 6, 4, 9, 4, 9, 4, 7, 5, 6, 9, 3, 1, 1, 8, 8, 9, 4, 8, 5, 0, 2, 1, 8, 3, 9, 3, 8, 1, 5, 6, 1, 3, 0, 3, 7, 0, 9, 0, 9, 5, 6, 4, 4, 6, 4, 0, 1, 6, 6, 7, 5, 7, 2, 1, 9, 5, 3, 2, 5, 7, 3, 2, 3, 4, 4, 5, 3, 2, 4, 7, 2, 1, 4
OFFSET
0,1
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.10 Sierpinski's Constant, p. 123.
LINKS
Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 103.
Guillaume Melquiond, W. Georg Nowak, Paul Zimmermann, Numerical approximation of the Masser-Gramain constant to four decimal places, Mathematics of Computation, Volume 82, Number 282, April 2013, Pages 1235-1246
Eric Weisstein's MathWorld, Sierpiński's Constant
FORMULA
S = gamma + beta'(1) / beta(1), where beta is Dirichlet's beta function.
S = log(Pi^2*exp(2*gamma) / (2*L^2)), where L is Gauss' lemniscate constant.
S = log(4*Pi^3*exp(2*gamma) / Gamma(1/4)^4), where gamma is Euler's constant and Gamma is Euler's Gamma function.
S = A062089 / Pi, where A062089 is Sierpiński's K constant.
S = A086058 - 1, where A086058 is the conjectured (but erroneous!) value of Masser-Gramain 'delta' constant. [updated by Vaclav Kotesovec, Apr 27 2015]
S = 2*gamma + (4/Pi)*integral_{x>0} exp(-x)*log(x)/(1-exp(-2*x)) dx.
Sum_{k=1..n} r(k)/k = Pi*(log(n) + S) + O(n^(-1/2)).
Equals 2*A001620 - A088538*A115252 [Coffey]. - R. J. Mathar, Jan 15 2021
EXAMPLE
0.822825249678847032995328716261464949475693118894850218393815613...
MATHEMATICA
S = Log[4*Pi^3*Exp[2*EulerGamma]/Gamma[1/4]^4]; RealDigits[S, 10, 104] // First
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
STATUS
approved
Decimal expansion of Sierpiński's S^ (Ŝ or "S hat" as named by S. Finch), a constant appearing in the asymptotics of the number of representations of a positive integer as a sum of two squares.
+10
1
1, 7, 7, 1, 0, 1, 1, 9, 6, 0, 9, 5, 6, 0, 9, 3, 9, 4, 2, 8, 7, 3, 9, 8, 0, 2, 3, 3, 5, 3, 6, 0, 5, 2, 9, 0, 8, 0, 1, 6, 6, 5, 0, 3, 9, 4, 5, 6, 8, 7, 2, 0, 8, 6, 1, 0, 2, 2, 8, 7, 0, 9, 0, 5, 2, 9, 5, 5, 9, 1, 1, 1, 1, 9, 4, 7, 4, 4, 5, 7, 9, 0, 6, 2, 0, 1, 6, 5, 2, 5, 1, 5, 4, 2, 4, 6, 4, 0, 2, 1, 2
OFFSET
1,2
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.10 Sierpinski's constant, p. 122.
FORMULA
S_hat = gamma + S - 12/Pi^2*zeta'(2) + log(2)/3 - 1, where S = A086058 - 1 = A062089 / Pi.
EXAMPLE
1.7710119609560939428739802335360529080166503945687208610228709...
MATHEMATICA
S = 2* EulerGamma + 2*Log[2 ] + 3*Log[Pi] - 4* Log[Gamma[1/4]]; (* S^ *) Sh = EulerGamma + S - 12/Pi^2 Zeta'[2] + Log[2]/3 - 1; RealDigits[Sh, 10, 101] // First
PROG
(PARI) 3*Euler + 3*log(Pi) - 4*lngamma(1/4) - 12*zeta'(2)/Pi^2 + 7*log(2)/3 - 1 \\ Charles R Greathouse IV, Aug 08 2014
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
STATUS
approved
Decimal expansion of a constant related to a conjectured value of the Masser-Gramain constant.
+10
0
6, 4, 6, 2, 4, 5, 4, 3, 9, 8, 9, 4, 8, 1, 3, 3, 0, 4, 2, 6, 6, 4, 7, 3, 3, 9, 6, 8, 4, 5, 7, 9, 2, 7, 9, 0, 0, 2, 2, 0, 1, 2, 9, 1, 2, 9, 6, 3, 1, 5, 7, 7, 2, 9, 3, 3, 0, 3, 8, 6, 2, 4, 6, 9, 9, 2, 9, 8, 3, 0, 1, 1, 0, 0, 0, 2, 8, 9, 2, 8, 0, 0, 5, 2, 7, 7, 9, 4, 3, 1, 1, 3, 1, 7, 6, 6, 0, 7, 0, 7, 5, 7
OFFSET
0,1
LINKS
Eric Weisstein's World of Mathematics, Masser-Gramain Constant.
FORMULA
Equals Pi*(A086058 - 1)/4. - Jean-François Alcover, May 22 2014
EXAMPLE
0.646245439894813304266473396845792790...
MATHEMATICA
RealDigits[ Pi/4*(2*EulerGamma + 2*Log[2] + 3*Log[Pi] - 4*Log[Gamma[1/4]]), 10, 102] // First (* Jean-François Alcover, Feb 07 2013, after Eric W. Weisstein *)
CROSSREFS
Cf. A086058.
KEYWORD
nonn,cons,easy
AUTHOR
Eric W. Weisstein, Jul 07 2003
EXTENSIONS
Name corrected by Amiram Eldar, Jun 25 2023
STATUS
approved

Search completed in 0.006 seconds