[go: up one dir, main page]

login
Search: a072347 -id:a072347
     Sort: relevance | references | number | modified | created      Format: long | short | data
Position of first occurrence of n in A072347.
+20
2
0, 3, 7, 27, 15, 427, 55, 31, 215, 219, 111, 119, 63, 431, 443, 471, 439, 223, 239, 1879, 127, 1719, 863, 1755, 891, 887, 879, 3423, 447, 495, 479, 3451, 3447, 255, 3439, 3503, 1727, 27355, 1967, 1787, 1775, 14167, 1783, 1759, 1911, 1903, 895, 7855, 991, 959, 6907, 6895, 7087, 55983, 511, 7099, 6879, 14043, 7007, 3455
OFFSET
1,2
COMMENTS
a(n) == 3 (mod 4) for n > 1, since A072347(2k) = A072347(floor(k/2)) and A072347(4k+1) = A072347(2k+1). - Robert Israel, May 04 2016
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..10000 (first 3341 terms from Robert Israel)
Rémy Sigrist, Colored logarithmic scatterplot of a(n) for n = 1..10000 (where the color is function of the Hamming weight of a(n))
MAPLE
# using procedure a from A072347
R[1]:= 0:
for n from 3 to 100000 by 4 do
v:= a(n);
if not assigned(R[v]) then R[v]:= n
fi
od:
for n from 1 while assigned(R[n]) do od:
seq(R[i], i=1..n-1); # Robert Israel, May 04 2016
MATHEMATICA
Block[{c, s}, c[w_] := With[{n = Length@ w}, Which[n == 0, 1, n == 1, First@ w, True, Last[w] c[Most@ w] + c[Most@ Most@ w]]]; s = {1}~Join~Array[c[IntegerDigits[#, 2]] &, 10^4]; TakeWhile[Array[-1 + FirstPosition[s, #][[1]] &, 50], IntegerQ]] (* Michael De Vlieger, Jan 20 2018, after Jean-François Alcover at A072347 *)
CROSSREFS
Cf. A072347.
KEYWORD
nonn,look
AUTHOR
Jeffrey Shallit, May 02 2016
STATUS
approved
Numbers m such that the continuants of their binary representations defined in A072347 equal 1.
+20
1
0, 1, 2, 4, 6, 8, 10, 16, 18, 24, 26, 32, 34, 40, 42, 64, 66, 72, 74, 96, 98, 104, 106, 128, 130, 136, 138, 160, 162, 168, 170, 256, 258, 264, 266, 288, 290, 296, 298, 384, 386, 392, 394, 416, 418, 424, 426, 512, 514, 520, 522, 544, 546, 552, 554, 640, 642, 648
OFFSET
1,3
LINKS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Aug 05 2013
STATUS
approved
If n=pqr...st in ternary, a(n)=value of the continuant [p,q,r,...,s,t].
+10
2
1, 1, 2, 1, 2, 3, 1, 3, 5, 1, 2, 3, 1, 3, 5, 1, 4, 7, 2, 3, 4, 2, 5, 8, 2, 7, 12, 1, 2, 3, 1, 3, 5, 1, 4, 7, 2, 3, 4, 2, 5, 8, 2, 7, 12, 3, 4, 5, 3, 7, 11, 3, 10, 17, 1, 3, 5, 1, 4, 7, 1, 5, 9, 3, 5, 7, 3, 8, 13, 3, 11, 19, 5, 7, 9, 5, 12, 19, 5, 17, 29, 1, 2, 3, 1, 3, 5, 1, 4, 7, 2, 3, 4, 2, 5, 8, 2, 7
OFFSET
0,3
COMMENTS
The continuant function is defined in A072347. The successive record values in this sequence occur at n=0,2,5,8 and, for k>=3, at n=3^k-3^(k-1)-1, 3^k-3^(k-2)-1 and 3^k-1 and are given in A073301.
a(3^n-1) = A000129(n+1) for n>=0. - Alois P. Heinz, Aug 06 2013
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..6560 (6560 = 3^8-1)
Wikipedia, Continuant
MAPLE
c:= proc() option remember;
if nargs=0 then 1
elif nargs=1 then args[1]
else args[-1]*c(seq(args[i], i=1..nargs-1))
+c(seq(args[i], i=1..nargs-2))
fi
end:
a:= n-> `if`(n=0, 1, c(convert(n, base, 3)[])):
seq(a(n), n=0..120); # Alois P. Heinz, Aug 06 2013
CROSSREFS
Cf. A072347.
KEYWORD
base,nonn,look
AUTHOR
John W. Layman, Jul 23 2002
STATUS
approved
a(n) is the n-th new record value in A073300.
+10
2
1, 2, 3, 5, 7, 8, 12, 17, 19, 29, 41, 46, 70, 99, 111, 169, 239, 268, 408, 577, 647, 985, 1393, 1562, 2378, 3363, 3771, 5741, 8119, 9104, 13860, 19601, 21979, 33461, 47321, 53062, 80782, 114243, 128103, 195025, 275807, 309268, 470832, 665857, 746639
OFFSET
1,2
LINKS
FORMULA
For n>=7, a(3n)=a(3n-2)+a(3n-4), a(3n+1)=a(3n-1)+a(3n-2) and a(3n+2)=a(3n+1)+a(3n-2). - R. J. Mathar, Jun 27 2007
MAPLE
A073301 := proc(n) option remember: local f6: f6:=[1, 2, 3, 5, 7, 8]: if(n<=6)then return f6[n]: elif(n mod 3 = 0)then return procname(n-2)+procname(n-4): elif(n mod 3 = 1)then return procname(n-2)+procname(n-3): else return procname(n-1)+procname(n-4): fi: end: seq(A073301(n), n=1..50); # Nathaniel Johnston, May 01 2011
CROSSREFS
KEYWORD
base,nonn,easy
AUTHOR
John W. Layman, Jul 23 2002
EXTENSIONS
Corrected by T. D. Noe, Oct 25 2006
STATUS
approved

Search completed in 0.006 seconds