[go: up one dir, main page]

login
Search: a072065 -id:a072065
     Sort: relevance | references | number | modified | created      Format: long | short | data
Multiples of 12: a(n) = 12*n.
+10
51
0, 12, 24, 36, 48, 60, 72, 84, 96, 108, 120, 132, 144, 156, 168, 180, 192, 204, 216, 228, 240, 252, 264, 276, 288, 300, 312, 324, 336, 348, 360, 372, 384, 396, 408, 420, 432, 444, 456, 468, 480, 492, 504, 516, 528, 540, 552, 564, 576, 588, 600, 612, 624, 636
OFFSET
0,2
COMMENTS
Apart from initial term(s), dimension of the space of weight 2n cusp forms for Gamma_0( 36 ).
The positive terms are the differences of consecutive star numbers (A003154). - Mihir Mathur, Jun 07 2013
A089911(a(n)) = 0. - Reinhard Zumkeller, Jul 05 2013
a(1) = 12 is a primitive abundant number, thus all a(n), n >= 2, are nonprimitive abundant numbers. - Daniel Forgues, Sep 24 2016
LINKS
Tanya Khovanova, Recursive Sequences
Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014.
William A. Stein, The modular forms database
Wikipedia, Star Number
FORMULA
a(n) = 12*n. a(n) = 2*a(n-1)-a(n-2) for n>1. G.f.: 12*x/(1-x)^2. - Vincenzo Librandi, Jun 11 2011
a(n) = A003154(n)- A003154(n-1). - Mihir Mathur, Jun 07 2013
MAPLE
A008594:=n->12*n: seq(A008594(n), n=0..100); # Wesley Ivan Hurt, Sep 24 2016
MATHEMATICA
12*Range[0, 200] (* Vladimir Joseph Stephan Orlovsky, Feb 19 2011 *)
NestList[12+#&, 0, 60] (* Harvey P. Dale, Feb 02 2022 *)
PROG
(Magma) [12*n: n in [0..50]]; // Vincenzo Librandi, Jun 11 2011
(Haskell)
a008594 = (* 12)
a008594_list = [0, 12 ..] -- Reinhard Zumkeller, Dec 12 2012
(PARI) a(n)=12*n \\ Charles R Greathouse IV, Apr 21 2015
CROSSREFS
Subsequence of A072065 and A121032.
KEYWORD
nonn,easy
STATUS
approved
a(n) = 12*n + 9.
+10
20
9, 21, 33, 45, 57, 69, 81, 93, 105, 117, 129, 141, 153, 165, 177, 189, 201, 213, 225, 237, 249, 261, 273, 285, 297, 309, 321, 333, 345, 357, 369, 381, 393, 405, 417, 429, 441, 453, 465, 477, 489, 501, 513, 525, 537, 549, 561, 573, 585, 597, 609, 621, 633
OFFSET
0,1
COMMENTS
Numbers k such that k mod 2 = (k+1) mod 3 = 1 and (k+2) mod 4 != 1. - Klaus Brockhaus, Jun 15 2004
For n > 3, the number of squares on the infinite 3-column chessboard at <= n knight moves from any fixed point. - Ralf Stephan, Sep 15 2004
A016946 is the subsequence of squares (for n = 3*k*(k+1) = A028896(k), then a(n) = (6k+3)^2 = A016946(k)). - Bernard Schott, Apr 05 2021
FORMULA
a(n) = 6*(4*n+1) - a(n-1) (with a(0)=9). - Vincenzo Librandi, Dec 17 2010
A089911(2*a(n)) = 4. - Reinhard Zumkeller, Jul 05 2013
G.f.: (9 + 3*x)/(1 - x)^2. - Alejandro J. Becerra Jr., Jul 08 2020
Sum_{n>=0} (-1)^n/a(n) = (Pi + log(3-2*sqrt(2)))/(12*sqrt(2)). - Amiram Eldar, Dec 12 2021
E.g.f.: 3*exp(x)*(3 + 4*x). - Stefano Spezia, Feb 25 2023
MATHEMATICA
12*Range[0, 200]+9 (* Vladimir Joseph Stephan Orlovsky, Feb 19 2011 *)
LinearRecurrence[{2, -1}, {9, 21}, 60] (* Harvey P. Dale, Apr 14 2019 *)
PROG
(Sage) [i+9 for i in range(525) if gcd(i, 12) == 12] # Zerinvary Lajos, May 21 2009
(Haskell)
a017629 = (+ 9) . (* 12) -- Reinhard Zumkeller, Jul 05 2013
(PARI) a(n)=12*n+9 \\ Charles R Greathouse IV, Jul 10 2016
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved
a(n) = 12*n + 2.
+10
18
2, 14, 26, 38, 50, 62, 74, 86, 98, 110, 122, 134, 146, 158, 170, 182, 194, 206, 218, 230, 242, 254, 266, 278, 290, 302, 314, 326, 338, 350, 362, 374, 386, 398, 410, 422, 434, 446, 458, 470, 482, 494, 506, 518, 530, 542, 554, 566, 578, 590, 602, 614, 626, 638
OFFSET
0,1
COMMENTS
Apart from initial term(s), dimension of the space of weight 2n cusp forms for Gamma_0( 40 ).
FORMULA
a(n) = 2*a(n-1) - a(n-2). - Vincenzo Librandi, Jun 07 2011
From G. C. Greubel, Sep 18 2019: (Start)
G.f.: 2*(1 + 5*x)/(1-x)^2.
E.g.f.: 2*(1 + 6*x)*exp(x). (End)
Sum_{n>=0} (-1)^n/a(n) = Pi/12 + sqrt(3)*log(2 + sqrt(3))/12. - Amiram Eldar, Dec 12 2021
MAPLE
A017545:=n->12*n+2: seq(A017545(n), n=0..60); # Wesley Ivan Hurt, Apr 27 2017
MATHEMATICA
12*Range[0, 60]+2 (* Vladimir Joseph Stephan Orlovsky, Feb 19 2011 *)
PROG
(Magma) [12*n+2: n in [0..60]]; // Vincenzo Librandi, Jun 07 2011
(PARI) a(n)=12*n+2 \\ Charles R Greathouse IV, Jul 10 2016
(Sage) [2*(6*n+1) for n in (0..60)] # G. C. Greubel, Sep 18 2019
(GAP) List([0..60], n-> 2*(6*n+1) ); # G. C. Greubel, Sep 18 2019
CROSSREFS
Subsequence of A072065.
KEYWORD
nonn,easy
STATUS
approved
a(n) = 12*n + 11.
+10
12
11, 23, 35, 47, 59, 71, 83, 95, 107, 119, 131, 143, 155, 167, 179, 191, 203, 215, 227, 239, 251, 263, 275, 287, 299, 311, 323, 335, 347, 359, 371, 383, 395, 407, 419, 431, 443, 455, 467, 479, 491, 503, 515, 527, 539, 551, 563, 575, 587, 599, 611, 623, 635
OFFSET
0,1
COMMENTS
Or, with a different offset, 12*n - 1. In any case, numbers congruent to -1 (mod 12). - Alonso del Arte, May 29 2011
Numbers congruent to 2 (mod 3) and 3 (mod 4). - Bruno Berselli, Jul 06 2017
FORMULA
a(n) = 2*a(n-1) - a(n-2). - Vincenzo Librandi, Jun 08 2011
G.f.: (11+x)/(1-x)^2. - Colin Barker, Feb 19 2012
A089911(2*a(n)) = 11. - Reinhard Zumkeller, Jul 05 2013
a(n) = 2*A003215(n+1) - 1 - 2*A003215(n). See Twin Hexagonal Frames illustration. - Leo Tavares, Aug 19 2021
MATHEMATICA
Array[12*#+11&, 100, 0] (* Vladimir Joseph Stephan Orlovsky, Dec 14 2009 *)
PROG
(PARI) a(n)=12*n+11
(Magma) [12*n+11: n in [0..60]]; // Vincenzo Librandi, Jun 08 2011
(Haskell)
a017653 = (+ 11) . (* 12) -- Reinhard Zumkeller, Jul 05 2013
CROSSREFS
Subsequence of A072065.
KEYWORD
nonn,easy
STATUS
approved
Numbers n such that Kronecker(6,n)==mu(gcd(6,n)).
+10
2
1, 5, 19, 23, 25, 29, 43, 47, 49, 53, 67, 71, 73, 77, 91, 95, 97, 101, 115, 119, 121, 125, 139, 143, 145, 149, 163, 167, 169, 173, 187, 191, 193, 197, 211, 215, 217, 221, 235, 239, 241, 245, 259, 263, 265, 269, 283, 287, 289, 293, 307, 311, 313, 317, 331, 335
OFFSET
1,2
FORMULA
From Colin Barker, Dec 14 2015: (Start)
a(n) = (3/2+(3*i)/2)*(i^n-i*(-i)^n)-(-1)^n+6*(n+1)-9 where i = sqrt(-1).
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
G.f.: x*(1+4*x+14*x^2+4*x^3+x^4) / ((1-x)^2*(1+x)*(1+x^2)).
(End)
PROG
(PARI) for (x=1, 200, for (y=1, 200, if (kronecker(x, y)==moebius(gcd(x, y)), write("km.txt", x, "; ", y, " : ", kronecker(x, y)))))
(PARI) isok(n) = kronecker(6, n) == moebius(gcd(6, n)); \\ Michel Marcus, Mar 17 2014
(PARI) Vec(x*(1+4*x+14*x^2+4*x^3+x^4)/((1-x)^2*(1+x)*(1+x^2)) + O(x^100)) \\ Colin Barker, Dec 14 2015
CROSSREFS
Equals 2 * A072065 + 1.
KEYWORD
nonn,easy
AUTHOR
Jon Perry, Sep 17 2002
EXTENSIONS
More terms from Michel Marcus, Mar 17 2014
STATUS
approved
Clique covering number of the n-triangular grid graph.
+10
1
1, 3, 4, 6, 8, 10, 13, 15, 19, 22, 26, 31, 35, 41, 46, 52, 58, 64, 71, 77, 85, 92, 100, 109, 117, 127, 136, 146, 156, 166, 177, 187, 199, 210, 222, 235, 247, 261, 274, 288, 302, 316, 331, 345, 361, 376, 392, 409, 425, 443, 460, 478, 496, 514, 533, 551, 571
OFFSET
1,2
COMMENTS
Maximal cliques are triangles in the n-triangular grid graph. The clique covering number cannot be less than the number of nodes divided by three. Perfect nonoverlapping coverings are possible for n + 1 in A072065. - Andrew Howroyd, Jun 27 2018
LINKS
Eric Weisstein's World of Mathematics, Clique Covering Number
Eric Weisstein's World of Mathematics, Triangular Grid Graph
FORMULA
a(n) ~ (n+1)*(n+2)/6. - Andrew Howroyd, Jun 27 2018
a(n) = 2*a(n-1) - a(n-3) - 2*a(n-4) + 2*a(n-5) + a(n-6) - 2*a(n-8) + a(n-9). - Eric W. Weisstein, Apr 18 2019
G.f.: x (-1 - x + 2*x^2 + x^3 - x^4 - 2*x^5 + 2*x^7 - x^8)/((-1 + x)^3*(1 + x - x^3 + x^5 + x^6)). - Eric W. Weisstein, Apr 18 2019
MATHEMATICA
Table[(Sqrt[3] (16 + 3 n (3 + n)) - 9 Cos[n Pi/6] + 2 Sqrt[3] Cos[2 n Pi/3] + 9 Cos[5 n Pi/6] + 9 Sin[n Pi/6] - 9 Sin[5 n Pi/6])/(18 Sqrt[3]), {n, 20}] (* Eric W. Weisstein, Apr 18 2019 *)
LinearRecurrence[{2, 0, -1, -2, 2, 1, 0, -2, 1}, {1, 3, 4, 6, 8, 10, 13, 15, 19}, 20] (* Eric W. Weisstein, Apr 18 2019 *)
CoefficientList[Series[(-1 - x + 2 x^2 + x^3 - x^4 - 2 x^5 + 2 x^7 - x^8)/((-1 + x)^3 (1 + x - x^3 + x^5 + x^6)), {x, 0, 20}], x] (* Eric W. Weisstein, Apr 18 2019 *)
CROSSREFS
Cf. A072065.
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, Mar 26 2018
EXTENSIONS
a(11)-a(24) from Andrew Howroyd, Jun 27 2018
More terms from Georg Fischer, Jun 04 2019
STATUS
approved
Number of tribone tilings of an n-triangle.
+10
1
1, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 8, 12, 0, 72, 0, 0, 0, 0, 0, 0, 185328, 0, 4736520, 21617456, 0, 912370744, 0, 0, 0, 0, 0, 0, 3688972842502560, 0, 717591590174000896, 9771553571471569856, 0, 3177501183165726091520, 0, 0, 0, 0, 0, 0
OFFSET
0,10
COMMENTS
This sequence was requested to be added by the author of the link Code Golf challenge. It is based on the work of J. H. Conway, who proved that n = 12k + 0,2,9,11 if and only if T(n) can be tiled (i.e., exactly covered without overlapping) by tribones.
LINKS
Code Golf Challenge, Number of Distinct Tribone Tilings, posted by CGCC user Bubbler.
J. H. Conway and J. C. Lagarias, Tiling with Polyominoes and Combinatorial Group Theory, Journal of Combinatorial Theory, Series A 53 (1990), 183-208.
James Propp, Trimer covers in the triangular grid: twenty mostly open problems, arXiv:2206.06472 [math.CO], 2022.
PROG
(Python) # tribone tilings
def h(coords):
def anyhex(i, j):
c = [x in coords for x in [(i-1, j), (i, j+1), (i+1, j+1), (i+1, j), (i, j-1), (i-1, j-1)]]
return any(map(lambda x, y: x and y, c, c[1:] + c[:1]))
return all(anyhex(*z) for z in coords)
def g(coords):
if not coords: return 1
#if not h(coords): return 0
i, j = min(coords)
if (i+1, j+1) not in coords: return 0
cases = 0
if (i+1, j) in coords: cases += g(coords - {(i, j), (i+1, j), (i+1, j+1)})
if (i, j+1) in coords: cases += g(coords - {(i, j), (i, j+1), (i+1, j+1)})
return cases
def f(n):
coords = {(i, j) for i in range(n) for j in range(i+1)}
#if n%12 not in [0, 2, 9, 11]: return 0
print(n, g(coords) if n%12 in [0, 2, 9, 11] else 0)
[f(x) for x in range(21)]
CROSSREFS
The sequence of nonzero indices is A072065.
Cf. A155219.
KEYWORD
nonn,hard
AUTHOR
Jonathan Oswald, May 13 2020
EXTENSIONS
Name clarified by James Propp, Mar 28 2022
STATUS
approved

Search completed in 0.007 seconds