[go: up one dir, main page]

login
Search: a063705 -id:a063705
     Sort: relevance | references | number | modified | created      Format: long | short | data
Cyclotomic polynomials Phi_n at x=phi, divided by sqrt(5) and rounded to nearest integer (where phi = tau = (sqrt(5)+1)/2).
+10
5
1, 0, 1, 2, 2, 7, 1, 20, 4, 10, 2, 143, 2, 376, 5, 12, 21, 2583, 7, 6764, 15, 75, 34, 46367, 18, 7435, 89, 2618, 104, 832039, 25, 2178308, 987, 3400, 610, 20161, 136, 39088168, 1597, 23229, 861, 267914295, 182, 701408732, 4895, 35921, 10946, 4807526975
OFFSET
0,4
MAPLE
with(numtheory); Phi_at_x := (n, y) -> subs(x=y, cyclotomic(n, x)); [seq(round(evalf(simplify(Phi_at_x(j, (sqrt(5)+1)/2))/(sqrt(5)))), j=0..120)];
MATHEMATICA
Join[{1}, Round[Simplify[Cyclotomic[Range[50], GoldenRatio]]/Sqrt[5]]] (* Paolo Xausa, Feb 27 2024 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Aug 03 2001
EXTENSIONS
a(43) and a(47) corrected by Sean A. Irvine, May 08 2023
STATUS
approved
Cyclotomic polynomials Phi_n at x=phi, floored down (where phi = tau = (sqrt(5)+1)/2).
+10
4
1, 0, 2, 5, 3, 16, 2, 45, 7, 23, 4, 320, 5, 841, 11, 25, 47, 5776, 14, 15125, 34, 166, 76, 103680, 41, 16626, 199, 5855, 233, 1860496, 56, 4870845, 2207, 7601, 1364, 45080, 305, 87403801, 3571, 51940, 1926, 599074576, 407, 1568397605, 10946, 80320
OFFSET
0,3
MAPLE
with(numtheory); Phi_at_x := (n, y) -> subs(x=y, cyclotomic(n, x)); [seq(floor(evalf(simplify(Phi_at_x(j, (sqrt(5)+1)/2)))), j=0..120)];
MATHEMATICA
Floor[Simplify[Cyclotomic[Range[0, 50], GoldenRatio]]] (* Paolo Xausa, Feb 27 2024 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Aug 03 2001
EXTENSIONS
a(43) corrected by Sean A. Irvine, May 08 2023
STATUS
approved
Cyclotomic polynomials Phi_n at x=phi, ceiled up (where phi = tau = (sqrt(5)+1)/2).
+10
4
2, 1, 3, 6, 4, 17, 2, 46, 8, 24, 5, 321, 6, 842, 12, 26, 48, 5777, 15, 15126, 35, 167, 77, 103681, 42, 16627, 200, 5856, 234, 1860497, 57, 4870846, 2208, 7602, 1365, 45081, 306, 87403802, 3572, 51941, 1927, 599074577, 408, 1568397606, 10947, 80321
OFFSET
0,1
MAPLE
with(numtheory); Phi_at_x := (n, y) -> subs(x=y, cyclotomic(n, x)); [seq(ceil(evalf(simplify(Phi_at_x(j, (sqrt(5)+1)/2)))), j=0..120)];
MATHEMATICA
Join[{2}, Ceiling[Simplify[Cyclotomic[Range[50], GoldenRatio]]]] (* Paolo Xausa, Feb 27 2024 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Aug 03 2001
STATUS
approved

Search completed in 0.006 seconds