[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a062699 -id:a062699
     Sort: relevance | references | number | modified | created      Format: long | short | data
Numbers n such that sigma(n) = 6*phi(n).
+10
12
6, 70, 616, 1240, 2090, 8932, 17980, 19780, 20320, 26980, 29512, 43180, 49742, 51688, 58058, 79000, 100130, 116870, 128570, 175370, 176715, 201376, 208280, 221536, 275770, 280670, 282680, 302176, 373065, 427924, 435435, 470764, 483616, 618772, 642124
OFFSET
1,1
COMMENTS
If p>2 & 2^p-1 is prime (a Mersenne prime) then 5*2^(p-2)*(2^p-1) is in the sequence. So 5*2^(A000043-2)*(2^A000043-1) is a subsequence of this sequence.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (calculated using data from Jud McCranie, terms 1..1000 from Donovan Johnson)
Kevin A. Broughan and Daniel Delbourgo, On the Ratio of the Sum of Divisors and Euler’s Totient Function I, Journal of Integer Sequences, Vol. 16 (2013), Article 13.8.8.
Kevin A. Broughan and Qizhi Zhou, On the Ratio of the Sum of Divisors and Euler's Totient Function II, Journal of Integer Sequences, Vol. 17 (2014), Article 14.9.2.
EXAMPLE
p>2, q=2^p-1(q is prime); m=5*2^(p-2)*q so sigma(m)=6*(2^(p-1)-1)*2^p=6*phi(m) hence m is in the sequence.
sigma(79000)=187200=6*31200 =6*phi(79000) so 79000 is in the sequence but 79000 is not of the form 5*2^(p-2)*(2^p-1).
MATHEMATICA
Do[If[DivisorSigma[1, m] == 6*EulerPhi[m], Print[m]], {m, 1000000}]
PROG
(PARI) is(n)=sigma(n)==6*eulerphi(n) \\ Charles R Greathouse IV, May 09 2013
(PARI) v=List(); forfactored(n=6, 10^6, if(sigma(n)==6*eulerphi(n), listput(v, n[1]))); Vec(v) \\ Charles R Greathouse IV, May 09 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Farideh Firoozbakht, Apr 01 2005
STATUS
approved
Numbers n such that sigma(n) = 8*phi(n).
+10
12
42, 594, 744, 1254, 7668, 8680, 10788, 11868, 12192, 14630, 15642, 16188, 25908, 28458, 49842, 60078, 70122, 77142, 105222, 124968, 125860, 138460, 142240, 165462, 168402, 169608, 188860, 201924, 242316, 259160, 302260, 553000, 561906, 700910, 726440
OFFSET
1,1
COMMENTS
If p>3 and 2^p-1 is prime (a Mersenne prime) then 35*2^(p-2)*(2^p-1) is in the sequence. So 35*2^(A000043-2)*(2^A000043-1) is a subsequence of this sequence.
If p>2 and 2^p-1 is prime (a Mersenne prime) then 3*2^(p-2)*(2^p-1) is in the sequence (the proof is easy). - Farideh Firoozbakht, Dec 23 2007
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (calculated using data from Jud McCranie, terms 1..1000 from Donovan Johnson)
Kevin A. Broughan and Daniel Delbourgo, On the Ratio of the Sum of Divisors and Euler’s Totient Function I, Journal of Integer Sequences, Vol. 16 (2013), Article 13.8.8.
Kevin A. Broughan and Qizhi Zhou, On the Ratio of the Sum of Divisors and Euler's Totient Function II, Journal of Integer Sequences, Vol. 17 (2014), Article 14.9.2.
EXAMPLE
p>3, q=2^p-1(q is prime); m=35*2^(p-2)*q so sigma(m)=48*(2^(p-1)-1)*2^p=8*(24*2^(p-3)*(2^p-2))=8*phi(m) hence m is in the sequence.
sigma(553000) = 1497600 = 8*187200 = 8*phi(553000) so 553000 is in the sequence but 553000 is not of the form 35*2^(p-2)*(2^p-1).
MATHEMATICA
Do[If[DivisorSigma[1, m] == 8*EulerPhi[m], Print[m]], {m, 1000000}]
Select[Range[800000], DivisorSigma[1, #]==8*EulerPhi[#]&] (* Harvey P. Dale, Sep 12 2018 *)
PROG
(PARI) is(n)=sigma(n)==8*eulerphi(n) \\ Charles R Greathouse IV, May 09 2013
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Farideh Firoozbakht, Apr 01 2005
STATUS
approved
Numbers n such that sigma(n) = 12*phi(n).
+10
10
210, 1848, 2970, 3720, 6270, 26796, 38340, 53940, 59340, 60960, 70686, 78210, 80940, 88536, 129540, 142290, 149226, 155064, 174174, 237000, 249210, 300390, 350610, 385710, 429408, 526110, 604128, 624840, 664608, 827310, 828072, 842010, 848040, 906528
OFFSET
1,1
COMMENTS
If p>2 and 2^p-1 is prime (a Mersenne prime) then 15*2^(p-2)*(2^p-1) is in the sequence. So 15*2^(A000043-2)*(2^A000043-1) is a subsequence of this sequence.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (calculated using data from Jud McCranie, terms 1..1000 from Donovan Johnson)
Kevin A. Broughan and Daniel Delbourgo, On the Ratio of the Sum of Divisors and Euler’s Totient Function I, Journal of Integer Sequences, Vol. 16 (2013), Article 13.8.8.
Kevin A. Broughan and Qizhi Zhou, On the Ratio of the Sum of Divisors and Euler's Totient Function II, Journal of Integer Sequences, Vol. 17 (2014), Article 14.9.2.
EXAMPLE
p>2, q=2^p-1(q is prime); m=15*2^(p-2)*q so sigma(m)=24*(2^(p-1)-1)*2^p=12*(8*2^(p-3)*(2^p-2))=12*phi(m) hence m is in the sequence.
sigma(237000)=748800=12*62400=12*phi(237000) so 237000 is in the sequence but 237000 is not of the form 15*2^(p-2)*(2^p-1).
MATHEMATICA
Do[If[DivisorSigma[1, m] == 12*EulerPhi[m], Print[m]], {m, 1200000}]
PROG
(PARI) is(n)=sigma(n)==12*eulerphi(n) \\ Charles R Greathouse IV, May 09 2013
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Farideh Firoozbakht, Apr 01 2005
STATUS
approved
Numbers n such that sigma(n) = 16*phi(n).
+10
7
20790, 26040, 43890, 268380, 368280, 377580, 415380, 426720, 547470, 566580, 777480, 906780, 996030, 1659000, 1744470, 2102730, 2179320, 2454270, 2699970, 3682770, 4373880, 5053860, 5340060, 5791170, 5874660, 5894070, 5936280, 6035040, 7067340, 8013060
OFFSET
1,1
COMMENTS
If p>3 and 2^p-1 is prime (a Mersenne prime) then 105*2^(p-2)*(2^p-1) is in the sequence. So 105*2^(A000043-2)*(2^A000043-1) is a subsequence of this sequence. It seems that 10 divides all terms of this sequence.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (calculated using data from Jud McCranie, terms 1..1000 from Donovan Johnson)
Kevin A. Broughan and Daniel Delbourgo, On the Ratio of the Sum of Divisors and Euler’s Totient Function I, Journal of Integer Sequences, Vol. 16 (2013), Article 13.8.8.
Kevin A. Broughan and Qizhi Zhou, On the Ratio of the Sum of Divisors and Euler's Totient Function II, Journal of Integer Sequences, Vol. 17 (2014), Article 14.9.2.
EXAMPLE
p>2, q=2^p-1(q is prime); m=105*2^(p-2)*q so sigma(m)=192*(2^(p-1)-1)*2^p=16*(48*2^(p-3)*(2^p-2))=16*phi(m) hence m is in the sequence.
sigma(1659000)=5990400=16*374400=16*phi(1659000) so 1659000 is in the sequence but 1659000 is not of the form 105*2^(p-2)*(2^p-1).
MATHEMATICA
Do[If[DivisorSigma[1, m] == 16*EulerPhi[m], Print[m]], {m, 10000000}]
PROG
(PARI) is(n)=sigma(n)==16*eulerphi(n) \\ Charles R Greathouse IV, May 09 2013
KEYWORD
easy,nonn
AUTHOR
Farideh Firoozbakht, Apr 01 2005
STATUS
approved
Numbers n such that sigma(n) = 5*phi(n).
+10
6
56, 190, 812, 1672, 4522, 5278, 16065, 24244, 25070, 33915, 39585, 56252, 80104, 93496, 102856, 107156, 140296, 157586, 220616, 224536, 316274, 317205, 365638, 389732, 423045, 479655, 546592, 559845, 596666, 601312, 696514, 731962, 1123605, 1161508, 1181895
OFFSET
1,1
COMMENTS
If p>2 and 2^p-1 is prime (a Mersenne prime) then 377*2^(p-2)*(2^p-1) is in the sequence (the proof is easy). So for n>1 377*2^(A000043(n)-2)*(2^A000043(n)-1) is in the sequence.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (calculated using data from Jud McCranie, terms 1..1000 from Donovan Johnson)
Kevin A. Broughan and Daniel Delbourgo, On the Ratio of the Sum of Divisors and Euler’s Totient Function I, Journal of Integer Sequences, Vol. 16 (2013), Article 13.8.8.
Kevin A. Broughan and Qizhi Zhou, On the Ratio of the Sum of Divisors and Euler's Totient Function II, Journal of Integer Sequences, Vol. 17 (2014), Article 14.9.2.
EXAMPLE
sigma(56) = 120 = 5*24 = 5*phi(56) so 56 is in the sequence.
MATHEMATICA
Do[If[DivisorSigma[1, m]==5*EulerPhi[m], Print[m]], {m, 1500000}]
PROG
(PARI) is(n)=sigma(n)==5*eulerphi(n) \\ Charles R Greathouse IV, May 09 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
Farideh Firoozbakht, Jan 29 2008, Jan 30 2008
STATUS
approved
Numbers k such that 4*phi(k) = 3*sigma(k).
+10
5
7, 209, 10013, 11687, 12857, 17537, 27577, 28067, 700321, 770431, 1321189, 1542281, 1681861, 1963039, 2282641, 2313961, 2664259, 3308041, 3709057, 3859207, 3929761, 4315751, 4380541, 4561381, 5193001, 5331001, 5576519, 5962333, 6561511, 7332919, 10065991, 12133627, 13678613, 14313949, 15263831
OFFSET
1,1
LINKS
Jud McCranie, Table of n, a(n) for n = 1..10000 (first 65 terms from Harry J. Smith)
EXAMPLE
For m=10013, phi(m)=8640, sigma(m)=11520, 34560 = 4*phi = 3*sigma.
MATHEMATICA
Do[s = 4*EulerPhi[n]-3*DivisorSigma[1, n]; If[Equal[s, 0], Print[n]], {n, 1, 10000000}]
PROG
(PARI) { n=0; for (m=1, 10^9, if (4*eulerphi(m) == 3*sigma(m), write("b065819.txt", n++, " ", m); if (n==65, return)) ) } \\ Harry J. Smith, Oct 31 2009
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Nov 23 2001
STATUS
approved
Numbers n such that sigma(n) = 10*phi(n) (where sigma=A000203, phi=A000010).
+10
5
168, 270, 570, 2376, 2436, 5016, 6426, 7110, 13566, 15834, 34452, 58520, 62568, 72732, 75210, 113832, 126882, 168756, 169218, 191862, 199368, 223938, 240312, 280488, 308568, 321468, 420888, 449442, 472758, 661848, 673608, 776736, 848540, 854496, 907236
OFFSET
1,1
COMMENTS
If n is in this sequence, then for any prime p not dividing n, sigma(np) - 10*phi(np) = 2*sigma(n).
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (calculated using data from Jud McCranie, terms 1..1000 from Donovan Johnson)
Kevin A. Broughan and Daniel Delbourgo, On the Ratio of the Sum of Divisors and Euler’s Totient Function I, Journal of Integer Sequences, Vol. 16 (2013), Article 13.8.8.
Kevin A. Broughan and Qizhi Zhou, On the Ratio of the Sum of Divisors and Euler's Totient Function II, Journal of Integer Sequences, Vol. 17 (2014), Article 14.9.2.
MATHEMATICA
Select[Range[10^6], DivisorSigma[1, #] == 10 * EulerPhi[#] &] (* Amiram Eldar, Dec 04 2019 *)
PROG
(PARI) for(k=1, 10^6, sigma(k) - 10*eulerphi(k) || print1(k", "));
KEYWORD
nonn
AUTHOR
M. F. Hasler, Mar 19 2010
STATUS
approved
Numbers n such that sigma(n) = 11*phi(n) (where sigma=A000203, phi=A000010).
+10
5
2580, 16770, 18630, 28896, 35970, 61404, 66024, 147576, 163944, 215124, 224010, 296184, 399126, 408672, 443394, 464340, 476010, 574308, 856086, 862752, 868428, 931224, 957348, 1004910, 1110186, 1496610, 1721720, 1723290, 1833348, 1971288, 2139852, 2234790
OFFSET
1,1
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (calculated using data from Jud McCranie, terms 1..1000 from Donovan Johnson)
Kevin A. Broughan and Daniel Delbourgo, On the Ratio of the Sum of Divisors and Euler’s Totient Function I, Journal of Integer Sequences, Vol. 16 (2013), Article 13.8.8.
Kevin A. Broughan and Qizhi Zhou, On the Ratio of the Sum of Divisors and Euler's Totient Function II, Journal of Integer Sequences, Vol. 17 (2014), Article 14.9.2.
MATHEMATICA
Select[Range[10^6], DivisorSigma[1, #] == 11 * EulerPhi[#] &] (* Amiram Eldar, Dec 04 2019 *)
PROG
(PARI) for(k=1, 2e6, sigma(k) - 11*eulerphi(k) || print1(k", "));
KEYWORD
nonn
AUTHOR
STATUS
approved
Numbers n such that sigma(n) = 13*phi(n) (where sigma=A000203, phi=A000010).
+10
5
630, 5544, 11160, 18810, 27000, 57000, 80388, 161820, 178020, 182880, 242820, 265608, 388620, 391500, 447678, 465192, 522522, 671760, 690120, 711000, 775170, 826500, 901170, 1051830, 1102290, 1157130, 1418160, 1578330, 1679400, 1812384, 1874520, 1993824
OFFSET
1,1
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (calculated using data from Jud McCranie, terms 1..1000 from Donovan Johnson)
Kevin A. Broughan and Daniel Delbourgo, On the Ratio of the Sum of Divisors and Euler’s Totient Function I, Journal of Integer Sequences, Vol. 16 (2013), Article 13.8.8.
Kevin A. Broughan and Qizhi Zhou, On the Ratio of the Sum of Divisors and Euler's Totient Function II, Journal of Integer Sequences, Vol. 17 (2014), Article 14.9.2.
MATHEMATICA
Select[Range[2*10^6], DivisorSigma[1, #]==13EulerPhi[#]&] (* Harvey P. Dale, Mar 29 2018 *)
PROG
(PARI) for(k=1, 2e6, sigma(k) - 13*eulerphi(k) || print1(k", "));
KEYWORD
nonn
AUTHOR
STATUS
approved
Numbers n such that sigma(n) = 14*phi(n) (where sigma=A000203, phi=A000010).
+10
5
420, 2730, 5940, 12540, 24024, 38610, 48360, 66528, 77490, 81510, 133920, 140448, 141372, 156420, 163590, 282720, 284580, 298452, 348348, 498420, 600780, 681912, 701220, 771420, 792480, 901530, 918918, 1016730, 1052220, 1150968, 1372680, 1439592, 1654620
OFFSET
1,1
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (calculated using data from Jud McCranie, terms 1..1000 from Donovan Johnson)
Kevin A. Broughan and Daniel Delbourgo, On the Ratio of the Sum of Divisors and Euler’s Totient Function I, Journal of Integer Sequences, Vol. 16 (2013), Article 13.8.8.
Kevin A. Broughan and Qizhi Zhou, On the Ratio of the Sum of Divisors and Euler's Totient Function II, Journal of Integer Sequences, Vol. 17 (2014), Article 14.9.2.
MATHEMATICA
Select[Range[10^6], DivisorSigma[1, #] == 14 * EulerPhi[#] &] (* Amiram Eldar, Dec 04 2019 *)
PROG
(PARI) for(k=1, 2e6, sigma(k) - 14*eulerphi(k) || print1(k", "));
KEYWORD
nonn
AUTHOR
STATUS
approved

Search completed in 0.010 seconds