[go: up one dir, main page]

login
Search: a062013 -id:a062013
     Sort: relevance | references | number | modified | created      Format: long | short | data
Coefficients of polynomials (in descending powers of x) P(n,x) := 1 + P(n-1,x)^2, where P(1,x) = x + 1.
+10
6
1, 1, 1, 2, 2, 1, 4, 8, 8, 5, 1, 8, 32, 80, 138, 168, 144, 80, 26, 1, 16, 128, 672, 2580, 7664, 18208, 35296, 56472, 74944, 82432, 74624, 54792, 31776, 13888, 4160, 677, 1, 32, 512, 5440, 43048, 269920, 1393728, 6082752, 22860480, 75010560, 217147904
OFFSET
1,4
FORMULA
From Peter Bala, Jul 01 2015: (Start)
P(n,x) = P(n,-2 - x) for n >= 2.
P(n+1,x)= P(n,(1 + x)^2). Thus if alpha is a zero of P(n,x) then sqrt(alpha) - 1 is a zero of P(n+1,x).
Define a sequence of polynomials Q(n,x) by setting Q(1,x) = 1 + x^2 and Q(n,x) = Q(n-1, 1 + x^2) for n >= 2. Then P(n,x) = Q(n,sqrt(x)).
Q(n,x) = Q(k,Q(n-k,x)) for 1 <= k <= n-1; P(n,x) = P(k,P(n-k,x)^2) for 1 <= k <= n - 1.
n-th row sum = P(n,1) = A003095(n+1);
P(n,1) = P(n+1,0) = P(n+1,-2); P(n,1) = P(n,-3) for n >= 2.
P(n,2) = A062013(n). (End)
EXAMPLE
Row 1: 1 1 (from x + 1)
Row 2: 1 2 2 (from x^2 + 2*x + 2)
Row 3: 1 4 8 8 5
Row 4: 1 8 32 80 138 168 144 80 26
PROG
(PARI) tabf(nn) = {my(P = x+1); print(Vec(P)); for (n=1, nn, P = 1 + P^2; print(Vec(P)); ); } \\ Michel Marcus, Jul 01 2015
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Clark Kimberling, Apr 02 2009
STATUS
approved
Coefficients of the eigenfunction of a sequence transformation.
+10
4
1, 3, 6, 45, 126, 750, 2796, 19389, 75894, 449562, 2027796, 12211794, 57895596, 332787324, 1677545304, 9766642077, 50378641830, 286825948194, 1529968671492, 8729259097158, 47374697101572, 269062276076868, 1484430536591592
OFFSET
0,2
COMMENTS
G.f. A(x) satisfies A(x^2) = (A(x/2)-1)/x - A(x/2)^2/2.
B(x) := 1/(2*x) - x*A(x^2) satisfies B(x)^2 + 1 = B(2*x^2).
Define f(n, c) := x - Sum_{k>=0} a(k)/(2*x)^(2*k+1) where x = c^(2^n). Then A003095(n+1) = A004019(n) + 1 = f(n, 1.502836801...). Also, A062013(n) = f(n, 1.78050350...). - Michael Somos, Jun 07 2021
EXAMPLE
G.f. = A(x) = 1 + 3*x + 6*x^2 + 45*x^3 + 126*x^4 + 750*x^5 + 2796*x^6 + ...
B(x) = 1/(2*x) - x - 3*x^3 - 6*x^5 - 45*x^7 - 126*x^9 - 750*x^11 - ... - Michael Somos, Jul 11 2019
MATHEMATICA
a[ n_] := If[n < 0, 0, Module[{A = 1 + O[x], m = 2}, While[m < n + 2, m *= 2; A = (Normal[ 1/x - Sqrt[ 1/x^2 - 2/x - 2*(Normal[A] /. x -> x^2) + O[x]^(m - 2)]] /. x -> 2*x) + O[x]^(m - 1) //PowerExpand]; SeriesCoefficient[A, n]]]; (* Michael Somos, Jun 07 2021 *)
PROG
(PARI) {a(n) = my(A, m); if( n < 0, 0, m=2; A = 1 + O(x); while( m < n+2, m*=2; A = subst(1/x - sqrt(2*(subst((1/2)/x - A, x, x^2) - 1/x)), x, 2*x)); polcoeff(A, n))};
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Oct 04 2003
STATUS
approved
Main diagonal of "square and add k" array.
+10
0
2, 5, 38, 2707, 21418388, 3000279372337641, 255122481276683701099886061668842
OFFSET
0,1
COMMENTS
Array of recurrence "start with 2, square and add k" begins:
k..|.A[k,n]=A[k,n-1]^2 + k
-1.|.2..3...8....63.......3968..15745023.247905749270528.............A003096
0..|.2..4..16...256......65536..4294967296.18446744073709551616......A001146
1..|.2..5..26...677.....458330..210066388901.44127887745906175987802.A003095
2..|.2..6..38..1446....2090918.4371938082726...19113842599189892819591078...
3..|.2..7..52..2707....7327852.53697414933907..2883412370584178505178284652.
4..|.2..8..68..4628...21418388.458747344518548.210449126102819371741916028308.
5..|.2..9..86..7401...54774806.3000279372337641.9001676312074749038996905444886.
6..|.2.10.106.11242..126382570.1597255405035792810...
7..|.2.11.128.16391..268664888.72180822044052551...
8..|.2.12.152.23112..534164552.285331768613360712..
9..|.2.13.178.31693.1004446258.1008912285210202573.
10.|.2.14.206.42446.1801662926.3245989298922881486.
FORMULA
a(n) = A[n,n] where A[k,n] = n-th term of recurrence A[k,0] = 2, A[k,n] = A[k,n-1]^2 + k.
MATHEMATICA
A[k_, 0] = 2; A[k_, n_] := A[k, n] = A[k, n-1]^2 + k; a[n_] := A[n, n]; a /@ Range[0, 6] (* Giovanni Resta, Jun 20 2016 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Dec 09 2007
EXTENSIONS
Corrected and edited by Giovanni Resta, Jun 20 2016
STATUS
approved

Search completed in 0.006 seconds