[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a069997 -id:a069997
     Sort: relevance | references | number | modified | created      Format: long | short | data
Decimal expansion of the least positive number x satisfying e^(-x)=2*sin(x).
+10
6
3, 5, 7, 3, 2, 7, 4, 1, 1, 3, 2, 2, 5, 5, 5, 4, 8, 0, 8, 3, 1, 4, 2, 4, 6, 7, 4, 8, 1, 2, 1, 1, 2, 3, 0, 9, 7, 1, 2, 8, 2, 7, 8, 2, 2, 4, 8, 3, 0, 5, 6, 6, 1, 0, 1, 8, 3, 6, 4, 3, 0, 8, 6, 0, 7, 7, 5, 4, 3, 8, 0, 5, 1, 4, 6, 5, 6, 3, 9, 8, 4, 0, 4, 3, 7, 5, 8, 8, 0, 5, 0, 8, 3, 9, 1, 8, 4, 7, 9, 1
OFFSET
0,1
EXAMPLE
x=0.3573274113225554808314246748121123097128278224830566...
MATHEMATICA
Plot[{E^(-x), Sin[x], 2 Sin[x], 3 Sin[x], 4 Sin[x]}, {x, 0, Pi/2}]
t = x /. FindRoot[E^(-x) == Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
RealDigits[t] (* Cf. A069997 *)
t = x /. FindRoot[E^(-x) == 2 Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
RealDigits[t] (* A196407 *)
t = x /. FindRoot[E^(-x) == 3 Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
RealDigits[t] (* A196408 *)
t = x /. FindRoot[E^(-x) == 4 Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
RealDigits[t] (* A196409 *)
t = x /. FindRoot[E^(-x) == 5 Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
RealDigits[t] (* A196462 *)
t = x /. FindRoot[E^(-x) == 6 Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
RealDigits[t] (* A196463 *)
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 02 2011
STATUS
approved
Decimal expansion of the least positive number x satisfying e^(-x)=3*sin(x).
+10
5
2, 5, 9, 9, 4, 8, 2, 1, 3, 5, 3, 3, 2, 1, 2, 8, 0, 6, 6, 7, 7, 5, 2, 2, 6, 3, 6, 8, 4, 6, 3, 2, 6, 7, 9, 8, 9, 3, 8, 7, 1, 9, 2, 3, 9, 6, 3, 5, 6, 3, 6, 8, 3, 4, 5, 3, 1, 2, 4, 9, 4, 4, 3, 2, 0, 9, 9, 5, 9, 2, 1, 6, 4, 6, 2, 2, 5, 4, 7, 3, 4, 3, 9, 1, 5, 0, 0, 3, 4, 1, 4, 5, 8, 5, 0, 8, 4, 8, 7, 3, 9
OFFSET
0,1
EXAMPLE
x=0.259948213533212806677522636846326798938719239635636...
MATHEMATICA
Plot[{E^(-x), Sin[x], 2 Sin[x], 3 Sin[x], 4 Sin[x]}, {x, 0, Pi/2}]
t = x /. FindRoot[E^(-x) == Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
RealDigits[t] (* Cf. A069997 *)
t = x /. FindRoot[E^(-x) == 2 Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
RealDigits[t] (* A196407 *)
t = x /. FindRoot[E^(-x) == 3 Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
RealDigits[t] (* A196408 *)
t = x /. FindRoot[E^(-x) == 4 Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
RealDigits[t] (* A196409 *)
t = x /. FindRoot[E^(-x) == 5 Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
RealDigits[t] (* A196462 *)
t = x /. FindRoot[E^(-x) == 6 Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
RealDigits[t] (* A196463 *)
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 02 2011
STATUS
approved
Decimal expansion of the least positive number x satisfying e^(-x)=4*sin(x).
+10
5
2, 0, 5, 0, 8, 0, 0, 4, 4, 5, 3, 9, 2, 9, 1, 6, 4, 4, 4, 5, 6, 0, 5, 1, 2, 9, 0, 8, 9, 3, 4, 7, 2, 3, 6, 2, 4, 7, 6, 2, 0, 8, 2, 0, 9, 1, 7, 7, 7, 1, 3, 6, 9, 6, 5, 8, 7, 3, 3, 5, 7, 9, 0, 1, 4, 5, 5, 8, 2, 8, 0, 3, 8, 1, 0, 9, 5, 8, 6, 4, 0, 4, 8, 5, 6, 3, 1, 3, 5, 5, 4, 7, 8, 3, 5, 7, 2, 3, 3, 2
OFFSET
0,1
EXAMPLE
x=0.205080044539291644456051290893472362476208209177713696...
MATHEMATICA
Plot[{E^(-x), Sin[x], 2 Sin[x], 3 Sin[x], 4 Sin[x]}, {x, 0, Pi/2}]
t = x /. FindRoot[E^(-x) == Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
RealDigits[t] (* Cf. A069997 *)
t = x /. FindRoot[E^(-x) == 2 Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
RealDigits[t] (* A196407 *)
t = x /. FindRoot[E^(-x) == 3 Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
RealDigits[t] (* A196408 *)
t = x /. FindRoot[E^(-x) == 4 Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
RealDigits[t] (* A196409 *)
t = x /. FindRoot[E^(-x) == 5 Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
RealDigits[t] (* A196462 *)
t = x /. FindRoot[E^(-x) == 6 Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
RealDigits[t] (* A196463 *)
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 02 2011
STATUS
approved
Decimal expansion of the least positive number x satisfying e^(-x)=5*sin(x).
+10
5
1, 6, 9, 6, 1, 0, 7, 1, 3, 6, 3, 6, 7, 3, 4, 8, 2, 1, 7, 3, 3, 3, 1, 9, 8, 7, 1, 3, 9, 9, 3, 4, 0, 9, 4, 4, 0, 6, 4, 0, 2, 3, 1, 1, 9, 6, 0, 5, 7, 7, 2, 1, 7, 9, 4, 9, 0, 5, 1, 4, 3, 5, 7, 7, 6, 8, 8, 8, 0, 9, 3, 8, 6, 5, 4, 4, 8, 2, 0, 7, 3, 2, 3, 4, 2, 0, 0, 1, 8, 6, 7, 5, 9, 0, 8, 5, 9, 0, 9, 7
OFFSET
0,2
EXAMPLE
x=0.1696107136367348217333198713993409440640231196057...
MATHEMATICA
Plot[{E^(-x), Sin[x], 2 Sin[x], 3 Sin[x], 4 Sin[x]}, {x, 0, Pi/2}]
t = x /. FindRoot[E^(-x) == Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
RealDigits[t] (* Cf. A069997 *)
t = x /. FindRoot[E^(-x) == 2 Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
RealDigits[t] (* A196407 *)
t = x /. FindRoot[E^(-x) == 3 Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
RealDigits[t] (* A196408 *)
t = x /. FindRoot[E^(-x) == 4 Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
RealDigits[t] (* A196409 *)
t = x /. FindRoot[E^(-x) == 5 Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
RealDigits[t] (* A196462 *)
t = x /. FindRoot[E^(-x) == 6 Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
RealDigits[t] (* A196463 *)
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 02 2011
STATUS
approved
Decimal expansion of the least positive number x satisfying e^(-x)=6*sin(x).
+10
5
1, 4, 4, 7, 1, 5, 9, 3, 6, 6, 5, 1, 7, 2, 5, 9, 5, 1, 9, 2, 9, 1, 0, 9, 5, 3, 4, 3, 1, 9, 4, 4, 9, 2, 0, 1, 9, 9, 7, 3, 1, 8, 2, 8, 6, 8, 8, 5, 8, 0, 0, 7, 9, 6, 8, 0, 1, 7, 0, 0, 2, 6, 0, 6, 2, 0, 8, 4, 3, 4, 7, 2, 3, 4, 2, 4, 5, 5, 5, 0, 4, 8, 6, 5, 3, 9, 5, 0, 5, 9, 4, 2, 2, 3, 8, 1, 2, 2, 1, 9
OFFSET
0,2
EXAMPLE
x=0.144715936651725951929109534319449201997318286885800796...
MATHEMATICA
Plot[{E^(-x), Sin[x], 2 Sin[x], 3 Sin[x], 4 Sin[x]}, {x, 0, Pi/2}]
t = x /. FindRoot[E^(-x) == Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
RealDigits[t] (* Cf. A069997 *)
t = x /. FindRoot[E^(-x) == 2 Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
RealDigits[t] (* A196407 *)
t = x /. FindRoot[E^(-x) == 3 Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
RealDigits[t] (* A196408 *)
t = x /. FindRoot[E^(-x) == 4 Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
RealDigits[t] (* A196409 *)
t = x /. FindRoot[E^(-x) == 5 Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
RealDigits[t] (* A196462 *)
t = x /. FindRoot[E^(-x) == 6 Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
RealDigits[t] (* A196463 *)
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 02 2011
STATUS
approved
Decimal expansion of solution to sin(x)-exp(-x)=0 around Pi.
+10
0
3, 0, 9, 6, 3, 6, 3, 9, 3, 2, 4, 1, 0, 6, 4, 6, 1, 1, 5, 6, 2, 5, 8, 4, 0, 8, 4, 9, 9, 0, 4, 0, 2, 4, 8, 5, 6, 5, 3, 2, 9, 1, 8, 6, 4, 1, 7, 5, 6, 2, 7, 7, 8, 0, 8, 0, 0, 5, 3, 2, 0, 8, 9, 6, 1, 3, 9, 4, 5, 8, 4, 7, 9, 5, 7, 2, 0, 0, 1, 5, 7, 3, 8, 0, 1, 7, 5, 2, 2, 2, 8, 3, 8, 1, 9, 9, 9, 3, 0, 7, 7, 5, 8, 1, 2
OFFSET
1,1
FORMULA
x=3.0963639324106461...
MATHEMATICA
RealDigits[ FindRoot[Sin[x] - Exp[ -x] == 0, {x, Pi}, WorkingPrecision -> 2^7][[1, 2]]][[1]] (* Robert G. Wilson v, Mar 26 2005 *)
CROSSREFS
Cf. A069997.
KEYWORD
cons,nonn
AUTHOR
Zak Seidov, Mar 25 2005
EXTENSIONS
More terms from Robert G. Wilson v, Mar 26 2005
STATUS
approved

Search completed in 0.006 seconds