[go: up one dir, main page]

login
Search: a069257 -id:a069257
     Sort: relevance | references | number | modified | created      Format: long | short | data
The number of terms in the greedy Egyptian fraction expansion of 1 = 1/n + 1/(n+1) + 1/(n+2) + ... + 1/A069257(n).
+20
1
3, 5, 8, 11, 12, 16, 18, 18, 21, 25, 29, 27, 28, 36, 35, 35, 41, 42, 42, 47, 51, 52, 49, 52, 56, 59, 61, 67, 68, 69, 72, 72, 76, 80, 78, 79, 89, 86, 82, 92, 94, 92, 101, 100, 99, 102, 101, 109, 108, 114, 115, 114, 114, 120, 125
OFFSET
2,1
EXAMPLE
a(3) = 5 since the expansion 1 = 1/3 + 1/4 + 1/5 + 1/6 + 1/20 has 5 terms.
MATHEMATICA
a[n_] := Module[{c = 1, s = 1/n, k = n}, While[s < 1, k = Max[k + 1, Ceiling[1/(1 - s)]]; s += 1/k; c++]; c]; Array[a, 20, 2]
CROSSREFS
Cf. A069257.
KEYWORD
nonn,more
AUTHOR
Amiram Eldar, Oct 18 2019
STATUS
approved

Search completed in 0.005 seconds