[go: up one dir, main page]

login
Search: a069138 -id:a069138
     Sort: relevance | references | number | modified | created      Format: long | short | data
Triangle read by rows. T(n, k) = (k + 1) * abs(Stirling1(n, k)).
+10
2
1, 0, 2, 0, 2, 3, 0, 4, 9, 4, 0, 12, 33, 24, 5, 0, 48, 150, 140, 50, 6, 0, 240, 822, 900, 425, 90, 7, 0, 1440, 5292, 6496, 3675, 1050, 147, 8, 0, 10080, 39204, 52528, 33845, 11760, 2254, 224, 9, 0, 80640, 328752, 472496, 336420, 134694, 31752, 4368, 324, 10
OFFSET
0,3
EXAMPLE
Triangle T(n, k) starts:
[0] 1;
[1] 0, 2;
[2] 0, 2, 3;
[3] 0, 4, 9, 4;
[4] 0, 12, 33, 24, 5;
[5] 0, 48, 150, 140, 50, 6;
[6] 0, 240, 822, 900, 425, 90, 7;
[7] 0, 1440, 5292, 6496, 3675, 1050, 147, 8;
[8] 0, 10080, 39204, 52528, 33845, 11760, 2254, 224, 9;
MAPLE
T := (n, k) -> (k + 1)*abs(Stirling1(n, k)):
for n from 0 to 8 do seq(T(n, k), k = 0..n) od;
CROSSREFS
Cf. A208529 (column 1), A006002 (subdiagonal), A000774 (row sums).
Cf. A069138 (Stirling2 counterpart), A360205 (Lah counterpart).
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Feb 08 2023
STATUS
approved
Triangle read by rows. T(n, k) = (-1)^(n-k)*(k+1)*binomial(n, k)*pochhammer(1-n, n-k).
+10
2
1, 0, 2, 0, 4, 3, 0, 12, 18, 4, 0, 48, 108, 48, 5, 0, 240, 720, 480, 100, 6, 0, 1440, 5400, 4800, 1500, 180, 7, 0, 10080, 45360, 50400, 21000, 3780, 294, 8, 0, 80640, 423360, 564480, 294000, 70560, 8232, 448, 9, 0, 725760, 4354560, 6773760, 4233600, 1270080, 197568, 16128, 648, 10
OFFSET
0,3
COMMENTS
A refinement of the number of partial permutations of an n-set (A002720).
Also the coefficients of a shifted derivative of the unsigned Lah polynomials (A271703).
EXAMPLE
Triangle T(n, k) starts:
[0] 1;
[1] 0, 2;
[2] 0, 4, 3;
[3] 0, 12, 18, 4;
[4] 0, 48, 108, 48, 5;
[5] 0, 240, 720, 480, 100, 6;
[6] 0, 1440, 5400, 4800, 1500, 180, 7;
[7] 0, 10080, 45360, 50400, 21000, 3780, 294, 8;
[8] 0, 80640, 423360, 564480, 294000, 70560, 8232, 448, 9;
MAPLE
T := (n, k) -> (-1)^(n - k)*(k + 1)*binomial(n, k)*pochhammer(1 - n, n - k):
seq(seq(T(n, k), k = 0..n), n = 0..9);
CROSSREFS
Cf. A052849 (column 1), A045991 (subdiagonal), A002720 (row sums), A271703.
Cf. A069138 (Stirling2 counterpart), A360174 (Stirling1 counterpart).
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Feb 08 2023
STATUS
approved

Search completed in 0.005 seconds