[go: up one dir, main page]

login
Search: a068551 -id:a068551
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = 2^(2*n+1) - binomial(2*n+1, n+1).
(Formerly M3920 N1611)
+10
91
1, 5, 22, 93, 386, 1586, 6476, 26333, 106762, 431910, 1744436, 7036530, 28354132, 114159428, 459312152, 1846943453, 7423131482, 29822170718, 119766321572, 480832549478, 1929894318332, 7744043540348, 31067656725032, 124613686513778, 499744650202436
OFFSET
0,2
COMMENTS
Also a(n) = 2nd elementary symmetric function of binomial(n,0), binomial(n,1), ..., binomial(n,n).
Also a(n) = one half the sum of the heights, over all Dyck (n+2)-paths, of the vertices that are at even height and terminate an upstep. For example with n=1, these vertices are indicated by asterisks in the 5 Dyck 3-paths: UU*UDDD, UU*DU*DD, UDUU*DD, UDUDUD, UU*DDUD, yielding a(1)=(2+4+2+0+2)/2=5. - David Callan, Jul 14 2006
Hankel transform is (-1)^n*(2n+1); the Hankel transform of sum(k=0..n, C(2*n,k) ) - C(2n,n) is (-1)^n*n. - Paul Barry, Jan 21 2007
Row sums of the Riordan matrix (1/(1-4x),(1-sqrt(1-4x))/2) (A187926). - Emanuele Munarini, Mar 16 2011
From Gus Wiseman, Jul 19 2021: (Start)
For n > 0, a(n-1) is also the number of integer compositions of 2n with nonzero alternating sum, where the alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i. These compositions are ranked by A053754 /\ A345921. For example, the a(3-1) = 22 compositions of 6 are:
(6) (1,5) (1,1,4) (1,1,1,3) (1,1,1,1,2)
(2,4) (1,2,3) (1,1,3,1) (1,1,2,1,1)
(4,2) (1,4,1) (1,2,1,2) (2,1,1,1,1)
(5,1) (2,1,3) (1,3,1,1)
(2,2,2) (2,1,2,1)
(3,1,2) (3,1,1,1)
(3,2,1)
(4,1,1)
(End)
REFERENCES
T. Myers and L. Shapiro, Some applications of the sequence 1, 5, 22, 93, 386, ... to Dyck paths and ordered trees, Congressus Numerant., 204 (2010), 93-104.
D. Phulara and L. W. Shapiro, Descendants in ordered trees with a marked vertex, Congressus Numerantium, 205 (2011), 121-128.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
R. Bacher, On generating series of complementary plane trees arXiv:math/0409050 [math.CO], 2004.
Vijay Balasubramanian, Javier M. Magan, and Qingyue Wu, A Tale of Two Hungarians: Tridiagonalizing Random Matrices, arXiv:2208.08452 [hep-th], 2022.
Paul Barry, On a Central Transform of Integer Sequences, arXiv:2004.04577 [math.CO], 2020.
E. A. Bender, E. R. Canfield and R. W. Robinson, The enumeration of maps on the torus and the projective plane, Canad. Math. Bull., 31 (1988), 257-271; see p. 270.
D. E. Davenport, L. K. Pudwell, L. W. Shapiro and L. C. Woodson, The Boundary of Ordered Trees, 2014.
P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 185
Toufik Mansour and José L. Ramirez, Enumerations of polyominoes determined by Fuss-Catalan words, Australas. J. Combin. 81 (3) (2021) 447-457, table 1.
Mircea Merca, A Special Case of the Generalized Girard-Waring Formula, J. Integer Sequences, Vol. 15 (2012), Article 12.5.7. - From N. J. A. Sloane, Nov 25 2012
D. Merlini, R. Sprugnoli and M. C. Verri, Waiting patterns for a printer, FUN with algorithm'01, Isola d'Elba, 2001.
D. Merlini, R. Sprugnoli and M. C. Verri, The tennis ball problem, J. Combin. Theory, A 99 (2002), 307-344 (A_n for s=2).
Vera Posch, Correlators in Matrix Models, Master Thesis, Uppsala Univ. (Sweden 2023). See p. 44.
John Riordan, Letter to N. J. A. Sloane, Sep 26 1980 with notes on the 1973 Handbook of Integer Sequences. Note that the sequences are identified by their N-numbers, not their A-numbers.
W. T. Tutte, On the enumeration of planar maps. Bull. Amer. Math. Soc. 74 1968 64-74.
T. R. S. Walsh and A. B. Lehman, Counting rooted maps by genus, J. Comb. Thy B13 (1972), 122-141 and 192-218 (eq. 5, b=1).
N. J. A. Sloane, Notes
FORMULA
G.f.: c(x)/(1-4x), c(x) = g.f. of Catalan numbers.
Convolution of Catalan numbers and powers of 4.
Also one half of convolution of central binomial coeffs. A000984(n), n=0, 1, 2, ... with shifted central binomial coeffs. A000984(n), n=1, 2, 3, ...
a(n) = A045621(2n+1) = (1/2)*A068551(n+1).
a(n) = Sum_{k=0..n} A000984(k)*A001700(n-k). - Philippe Deléham, Jan 22 2004
a(n) = Sum_{k=0..n+1} binomial(n+k, k-1)2^(n-k+1). - Paul Barry, Nov 13 2004
a(n) = Sum_{i=0..n} binomial(2n+2, i). See A008949. - Ed Catmur (ed(AT)catmur.co.uk), Dec 09 2006
a(n) = Sum_{k=0..n+1, C(2n+2,k)} - C(2n+2,n+1). - Paul Barry, Jan 21 2007
Logarithm g.f. log(1/(2-C(x)))=sum(n>0, a(n)/n*x^n), C(x)=(1-sqrt(1-4*x))/2x (A000108). - Vladimir Kruchinin, Aug 10 2010
D-finite with recurrence: (n+3) a(n+2) - 2(4n+9) a(n+1) + 8(2n+3) a(n) = 0. - Emanuele Munarini, Mar 16 2011
E.g.f.:exp(2*x)*(2*exp(2*x) - BesselI(0,2*x) - BesselI(1,2*x)).
This is the first derivative of exp(2*x)*(exp(2*x) - BesselI(0,2*x))/2. See the e.g.f. of A032443 (which has a plus sign) and the remarks given there. - Wolfdieter Lang, Jan 16 2012
a(n) = Sum_{0<=i<j<=n+1} binomial(n+1, i)*binomial(n+1, j). - Mircea Merca, Apr 05 2012
A000346 = A004171 - A001700. See A032443 for the sum. - M. F. Hasler, Jan 02 2014
0 = a(n) * (256*a(n+1) - 224*a(n+2) + 40*a(n+3)) + a(n+1) * (-32*a(n+1) + 56*a(n+2) - 14*a(n+3)) + a(n+2) * (-2*a(n+2) + a(n+3)) if n>-5. - Michael Somos, Jan 25 2014
REVERT transform is [1,-5,28,-168,1056,...] = alternating signed version of A069731. - Michael Somos, Jan 25 2014
Convolution square is A038806. - Michael Somos, Jan 25 2014
BINOMIAL transform of A055217(n-1) is a(n-1). - Michael Somos, Jan 25 2014
(n+1) * a(n) = A033504(n). - Michael Somos, Jan 25 2014
Recurrence: (n+1)*a(n) = 512*(2*n-7)*a(n-5) + 256*(13-5*n)*a(n-4) + 64*(10*n-17)*a(n-3) + 32*(4-5*n)*a(n-2) + 2*(10*n+1)*a(n-1), n>=5. - Fung Lam, Mar 21 2014
Asymptotic approximation: a(n) ~ 2^(2n+1)*(1-1/sqrt(n*Pi)). - Fung Lam, Mar 21 2014
a(n) = Sum_{m = n+2..2*(n+1)} binomial(2*(n+1), m), n >= 0. - Wolfdieter Lang, May 22 2015
a(n) = A000302(n) + A008549(n). - Gus Wiseman, Jul 19 2021
a(n) = Sum_{j=1..n+1} Sum_{k=1..j} 2^(j-k)*binomial(n+k-1, n). - Fabio Visonà, May 04 2022
a(n) = (1/2)*(-1)^n*binomial(-(n+1), n+2)*hypergeom([1, 2*n + 3], [n + 3], 1/2). - Peter Luschny, Nov 29 2023
EXAMPLE
G.f. = 1 + 5*x + 22*x^2 + 93*x^3 + 386*x^4 + 1586*x^5 + 6476*x^6 + ...
MAPLE
seq(2^(2*n+1)-binomial(2*n, n)*(2*n+1)/(n+1), n=0..12); # Emanuele Munarini, Mar 16 2011
MATHEMATICA
Table[2^(2n+1)-Binomial[2n, n](2n+1)/(n+1), {n, 0, 20}] (* Emanuele Munarini, Mar 16 2011 *)
a[ n_] := If[ n<-4, 0, (4^(n + 1) - Binomial[2 n + 2, n + 1]) / 2]; (* Michael Somos, Jan 25 2014 *)
PROG
(PARI) {a(n) = if( n<-4, 0, n++; (2^(2*n) - binomial(2*n, n)) / 2)}; /* Michael Somos, Jan 25 2014 */
(Maxima) makelist(2^(2*n+1)-binomial(2*n, n)*(2*n+1)/(n+1), n, 0, 12); /* Emanuele Munarini, Mar 16 2011 */
(Magma) [2^(2*n+1) - Binomial(2*n+1, n+1): n in [0..30]]; // Vincenzo Librandi, Jun 07 2011
CROSSREFS
Cf. A000108, A014137, A014318. A column of A058893. Subdiagonal of A053979.
Bisection of A058622 and (possibly) A007008.
Even bisection of A294175 (without the first two terms).
The following relate to compositions of 2n with alternating sum k.
- The k > 0 case is counted by A000302.
- The k <= 0 case is counted by A000302.
- The k != 0 case is counted by A000346 (this sequence).
- The k = 0 case is counted by A001700 or A088218.
- The k < 0 case is counted by A008549.
- The k >= 0 case is counted by A114121.
A011782 counts compositions.
A086543 counts partitions with nonzero alternating sum (bisection: A182616).
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A345197 counts compositions by length and alternating sum.
KEYWORD
nonn,easy
EXTENSIONS
Corrected by Christian G. Bower
STATUS
approved
a(n) = 2^n - binomial(n, floor(n/2)).
+10
13
0, 1, 2, 5, 10, 22, 44, 93, 186, 386, 772, 1586, 3172, 6476, 12952, 26333, 52666, 106762, 213524, 431910, 863820, 1744436, 3488872, 7036530, 14073060, 28354132, 56708264, 114159428, 228318856, 459312152, 918624304, 1846943453, 3693886906
OFFSET
0,3
COMMENTS
p(n) = a(n)/2^n is the probability that a majority of heads had occurred at some point after n flips of a fair coin. For example, after 3 flips of a coin, the probability is 5/8 that a majority of heads had occurred at some point. (First flip is heads, p=1/2, or sequence THH, p=1/8.) - Brian Galebach, May 14 2001
Hankel transform is (-1)^n*n. - Paul Barry, Jan 11 2007
Hankel transform of a(n+1) is A127630. - Paul Barry, Sep 01 2009
a(n) is the number of n-step walks on the number line that are positive at some point along the walk. - Benjamin Phillabaum, Mar 06 2011
LINKS
Kairi Kangro, Mozhgan Pourmoradnasseri, Dirk Oliver Theis, Short note on the number of 1-ascents in dispersed dyck paths, arXiv:1603.01422 [math.CO], 2016.
S. Mason and J. Parsley, A geometric and combinatorial view of weighted voting, arXiv preprint arXiv:1109.1082 [math.CO], 2011.
FORMULA
a(n) = 2^n - A001405(n).
a(2*k) = 2*a(2*k-1), a(2*k+1) = 2*a(2*k) + Catalan(k).
a(n+1) = b(0)*b(n)+b(1)*b(n-1)+...+b(n)*b(0), b(k)=C(k, [ k/2 ]).
G.f.: c(x^2)*x/(1-2*x) where c(x) = g.f. for Catalan numbers A000108.
a(n) = A054336(n, 1) (second column of triangle).
E.g.f.: exp(2*x) - I_0(2*x) - I_1(2*x) where I_n(x) is n-th modified Bessel function as a function of x. - Benjamin Phillabaum, Mar 06 2011
a(2*n+1) = A000346(n); a(2*n) = A068551(n). - Emeric Deutsch, Nov 16 2003
a(n) = Sum_{k=0..n-1} binomial(n, floor(k/2)). - Paul Barry, Aug 05 2004
a(n+1) = 2*a(n) + Catalan(n/2)*(1+(-1)^n)/2. - Paul Barry, Aug 05 2004
a(n+1) = Sum_{k=0..floor(n/2)} 2^(n-2*k)*A000108(k). - Paul Barry, Sep 01 2009
(n+1)*a(n) +2*(-n-1)*a(n-1) +4*(-n+2)*a(n-2) +8*(n-2)*a(n-3) = 0. - R. J. Mathar, Dec 02 2012
MAPLE
seq( 2^n -binomial(n, floor(n/2)), n=0..35); # G. C. Greubel, Jan 13 2020
MATHEMATICA
Table[2^n - Binomial[n, Floor[n/2]], {n, 0, 35}] (* Roger L. Bagula, Aug 26 2006 *)
PROG
(PARI) {a(n)=if(n<0, 0, 2^n -binomial(n, n\2))} /* Michael Somos, Oct 31 2006 */
(Magma) [2^n - Binomial(n, Floor(n/2)): n in [0..35]]; // Bruno Berselli, Mar 08 2011
(Sage) [2^n -binomial(n, floor(n/2)) for n in (0..35)] # G. C. Greubel, Jan 13 2020
(GAP) List([0..35], n-> 2^n - Binomial(n, Int(n/2)) ); # G. C. Greubel, Jan 13 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
David M Bloom, Brooklyn College
EXTENSIONS
Edited by N. J. A. Sloane, Oct 08 2006
Adjustments to formulas (correcting offsets) from Michael Somos, Oct 31 2006
STATUS
approved
Irregular triangle read by rows: T(n,k) is the number of atoms + co-atoms contained in the k-th balanced string of left/right parentheses of length 2*n, where strings within a row are in reverse lexicographical order.
+10
5
1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 2, 2, 3, 3, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 3, 3, 3, 3, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 3, 3, 4, 4, 4, 4, 3, 3, 3, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 3, 3, 4, 4, 4, 4, 3, 3, 3, 2, 2, 2, 3, 3, 3, 3, 2, 2, 2, 1, 1, 2, 2, 1, 1, 1
OFFSET
1,4
COMMENTS
See A368750 for the definition of balanced strings and atoms/co-atoms.
REFERENCES
Donald E. Knuth, The Art of Computer Programming, Vol. 4A: Combinatorial Algorithms, Part 1, Addison-Wesley, 2011, Section 7.2.1.6, exercise 60, p. 478.
LINKS
Paolo Xausa, Table of n, a(n) for n = 1..17576 (rows 1..8 of the triangle, flattened).
FORMULA
T(n,k) = A368750(n,k) + A368751(n,k).
EXAMPLE
Triangle begins:
[1] 1 1;
[2] 1 2 2 2 2 1;
[3] 1 1 2 2 2 3 3 3 3 2 2 3 3 3 3 2 2 2 1 1;
...
The strings corresponding to row 2, in reverse lexicographical order, are:
"))((" (0 atoms, 1 co-atom),
")()(" (2 co-atoms),
")(()" (1 co-atom, 1 atom),
"())(" (1 atom, 1 co-atom),
"()()" (2 atoms) and
"(())" (1 atom).
MATHEMATICA
strings[n_]:=Permutations[PadLeft[PadLeft[{}, n, 1], 2n, -1]];
Array[Map[Count[Accumulate[#], 0]&, strings[#]]&, 5]
CROSSREFS
Cf. A000984 (row lengths), A068551 (row sums), A362030 and A368804 (binary words).
Cf. A368750 (atoms), A368751 (co-atoms), A368753 (defects).
KEYWORD
nonn,tabf
AUTHOR
Paolo Xausa, Jan 05 2024
STATUS
approved
Triangle read by rows: T(n,k)=2^k*binomial(2n-k,n-k), 1<=k<=n.
+10
0
2, 6, 4, 20, 16, 8, 70, 60, 40, 16, 252, 224, 168, 96, 32, 924, 840, 672, 448, 224, 64, 3432, 3168, 2640, 1920, 1152, 512, 128, 12870, 12012, 10296, 7920, 5280, 2880, 1152, 256, 48620, 45760, 40040, 32032, 22880, 14080, 7040, 2560, 512, 184756, 175032
OFFSET
1,1
COMMENTS
Row sums yield A068551.
T(n,1) = binomial(2n,n) = A000984(n); T(n,n) = 2^n.
REFERENCES
M. Eisen, Elementary Combinatorial Analysis, Gordon and Breach, 1969 (p. 150).
LINKS
F. Ruskey, Average shape of binary trees, SIAM J. Alg. Disc. Meth., 1, 1980, 43-50.
EXAMPLE
Triangle starts:
2;
6,4;
20,16,8;
70,60,40,16;
MAPLE
T:=proc(n, k) if k<=n then 2^k*binomial(2*n-k, n-k) else 0 fi end: for n from 1 to 10 do seq(T(n, k), k=1..n) od; # yields sequence in triangular form
MATHEMATICA
Flatten[Table[2^k*Binomial[2n-k, n-k], {n, 1, 10}, {k, 1, n}]] (* Stefano Spezia, Sep 20 2019 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Sep 04 2005
STATUS
approved

Search completed in 0.007 seconds