Displaying 11-12 of 12 results found.
Numbers N for which there is k > 0 such that sum of digits(N^k) = N, but the least such k is larger than the least k for which sum of digits(N^k) > N*11/10.
+10
0
17, 31, 63, 86, 91, 103, 118, 133, 155, 157, 211, 270, 290, 301, 338, 352, 421, 432, 440, 441, 450, 478, 513, 533, 693, 853, 1051, 1237, 1363, 1459, 1526, 1665, 2781
CROSSREFS
Cf. sum of digits of k^n: A001370 (k=2), A004166 (k=3), A065713 (k=4), A066001 (k=5), A066002 (k=6), A066003 (k=7), A066004 (k=8), A065999 (k=9), A066005 (k=11), A066006 (k=12). (In these sequences, k is fixed and n is the index/exponent; in the present sequence it's the opposite and therefore the names k <-> n are exchanged.)
Sum of decimal digits of 118^n.
+10
0
1, 10, 19, 19, 55, 64, 55, 64, 82, 91, 109, 100, 109, 181, 118, 145, 127, 163, 154, 172, 154, 190, 226, 190, 208, 217, 271, 289, 253, 280, 298, 307, 334, 289, 334, 280, 361, 343, 334, 379, 406, 406, 379, 424, 379, 424, 415, 406, 523, 433, 478
Search completed in 0.008 seconds
|