[go: up one dir, main page]

login
Search: a064526 -id:a064526
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(1) = 1, a(2) = 2, and a(n+1) = a(n) * sum of all previous terms up to a(n-1) for n >= 2.
+0
8
1, 2, 2, 6, 30, 330, 13530, 5019630, 69777876630, 351229105131280530, 24509789089304573335878465330, 8608552999157278550998626549630446732052243030
OFFSET
1,2
COMMENTS
From Petros Hadjicostas, May 11 2020: (Start)
R. J. Mathar's conjecture is correct and this is identical to A064847 starting at n = 3. To see why this is the case, consider the sequences u(n) and v(n) defined by u(1) = v(1) = 1, and u(k+1) = u(k) + v(k), v(k+1) = u(k)*v(k) for k >= 1. Then u(n) = A003686(n) and v(n) = A064847(n) for n >= 1.
Then v(n) = u(n+1) - u(n), and thus Sum_{k=1..n-1} v(k) = u(n) - u(1) = u(n) - 1 for n >= 2. Then v(n-1) + ... + v(3) + (v(2) + 1) + v(1) = u(n) for n >= 3, and hence v(n)*(v(n-1) + ... + v(3) + (v(2) + 1) + v(1)) = u(n)*v(n) = v(n+1).
Since v(1) = 1 = a(1) and v(2) + 1 = 2 = a(2), the sequence (v(1), v(2) + 1, v(3), ..., v(n), ...) is identical to the current sequence. Hence, a(n) = v(n) = u(n+1) - u(n) = A003686(n+1) - A003686(n) for n >= 3. (End)
LINKS
Petros Hadjicostas, Table of n, a(n) for n = 1..17
FORMULA
Conjecture: a(n) = A003686(n+1) - A003686(n) for n >= 3. - R. J. Mathar, Apr 24 2007
MATHEMATICA
nxt[{t1_, t2_, a_}]:=Module[{c=t1*a}, {t1+t2, c, c}]; Join[{1}, NestList[nxt, {1, 2, 2}, 10][[All, 2]]] (* Harvey P. Dale, Aug 30 2020 *)
PROG
(PARI) lista(nn) = { my(va = vector(nn)); va[1] = 1; va[2] = 2; for(n=3, nn, va[n] = va[n-1]*sum(k=1, n-2, va[k]); ); va; } \\ Petros Hadjicostas, May 11 2020
CROSSREFS
See A064847 for another version.
KEYWORD
nonn
AUTHOR
Amarnath Murthy, Apr 29 2004
EXTENSIONS
More terms from Gareth McCaughan, Jun 10 2004
STATUS
approved
An infinite coprime sequence defined by recursion.
(Formerly M2488 N0986)
+0
2
3, 5, 13, 17, 241, 257, 65281, 65537, 4294901761, 4294967297, 18446744069414584321, 18446744073709551617, 340282366920938463444927863358058659841
OFFSET
0,1
COMMENTS
Every term is relatively prime to all others. - Michael Somos, Feb 01 2004
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
A. W. F. Edwards, Infinite coprime sequences, Math. Gaz., 48 (1964), 416-422.
A. W. F. Edwards, Infinite coprime sequences, Math. Gaz., 48 (1964), 416-422. [Annotated scanned copy]
FORMULA
a(2*n + 1) = a(2*n) + a(2*n - 1) - 1, a(2*n) = a(2*n - 1)^2 - 3 * a(2*n - 1) + 3, a(0) = 3, a(1) = 5. - Michael Somos, Feb 01 2004
Conjecture: a(2n+1)=A001146(n+1)+1. - R. J. Mathar, May 15 2007
a(2*n) = A220294(n). a(2*n + 1) = A000215(n+1). - Michael Somos, Dec 10 2012
MATHEMATICA
a[0] = 3; a[1] = 5;
a[n_] := a[n] = If[OddQ[n], a[n-1] + a[n-2] - 1, a[n-1]^2 - 3*a[n-1] + 3];
Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Aug 16 2018, after _Michel Somos_ *)
PROG
(PARI) {a(n) = if( n<2, 3 * (n>=0) + 2 * (n>0), if( n%2, a(n-1) + a(n-2) - 1, a(n-1)^2 - 3 * a(n-1) + 3))} /* Michael Somos, Feb 01 2004 */
KEYWORD
nonn
EXTENSIONS
More terms from Jeffrey Shallit
Edited by Michael Somos, Feb 01 2004
STATUS
approved
Number of genealogical 1-2 rooted trees of height n.
+0
15
1, 2, 3, 5, 11, 41, 371, 13901, 5033531, 69782910161, 351229174914190691, 24509789089655802510792656021, 8608552999157278575508415639286249242844899051
OFFSET
1,2
COMMENTS
Let u(n), v(n) be defined by u(1) = v(1) = 1, u(n+1) = u(n) + v(n) and v(n+1) = u(n)*v(n) for n >= 1; then a(n) = u(n) and A064847(n) = v(n). - Benoit Cloitre, Apr 01 2002 [Edited by Petros Hadjicostas, May 11 2020]
Consider the mapping f(a/b) = (a + b)/(a*b). Taking a = 1 and b = 1 to start with and carrying out this mapping repeatedly on each new (reduced) rational number gives the following sequence 1/1, 2/1, 3/2, 5/6, 11/30, ... The current sequence contains the numerators. - Amarnath Murthy, Mar 24 2003
An infinite coprime sequence defined by recursion. - Michael Somos, Mar 19 2004
REFERENCES
D. Parisse, The Tower of Hanoi and the Stern-Brocot Array, Thesis, Munich, 1997.
FORMULA
Limit_{n -> infinity} a(n)^phi/A064847(n) = 1, where phi = (1 + sqrt(5))/2 is the golden ratio. - Benoit Cloitre, May 08 2002
Numerator of b(n), where b(n) = 1/numerator(b(n-1)) + 1/denominator(b(n-1)) for n >= 2 with b(1) = 1.
a(n+1) = a(n) + a(1)*a(2)*...*a(n-1) for n >= 2. Also a(n+1) = a(n) + a(n-1)*(a(n) - a(n-1)) for n >= 2. In both cases, we start with a(1) = 1 and a(2) = 2.
a(n) ~ c^(phi^n), where c = 1.22508584062304325811405322247537613534139348463831009881946422737141574647... and phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, May 21 2015
MATHEMATICA
RecurrenceTable[{a[1]==1, a[2]==2, a[n]==a[n-1]+a[n-2](a[n-1]-a[n-2])}, a[n], {n, 15}] (* Harvey P. Dale, Jul 27 2011 *)
Re[NestList[Re@#+(1+I Re@#)Im@#&, 1+I, 15]] (* Vladimir Reshetnikov, Jul 18 2016 *)
PROG
(PARI) a(n) = local(an); if(n<1, 0, an=vector(max(2, n)); an[1]=1; an[2]=2; for(k=3, n, an[k]=an[k-1] - an[k-2]^2 + an[k-1]*an[k-2]); an[n])
(Magma) I:=[1, 2]; [n le 2 select I[n] else Self(n-1)+Self(n-2)*(Self(n-1)-Self(n-2)): n in [1..14]]; // Vincenzo Librandi, Jul 19 2016
KEYWORD
nonn,easy,nice
AUTHOR
EXTENSIONS
Additional description from Andreas M. Hinz and Daniele Parisse
STATUS
approved
a(2n)=2*a(2n-2)^2-1, a(2n+1)=2*a(2n)-1, a(0)=2.
(Formerly M0838)
+0
2
2, 3, 7, 13, 97, 193, 18817, 37633, 708158977, 1416317953, 1002978273411373057, 2005956546822746113, 2011930833870518011412817828051050497, 4023861667741036022825635656102100993
OFFSET
0,1
COMMENTS
An infinite coprime sequence defined by recursion.
Every term is relatively prime to all others. - Michael Somos, Feb 01 2004
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
a(2n) = A001075(2^n).
MATHEMATICA
nxt[{n_, a_, b_}]:=If[OddQ[n], {n+1, b, 2a^2-1}, {n+1, b, 2b-1}]; Transpose[ NestList[ nxt, {1, 2, 3}, 15]][[2]] (* Harvey P. Dale, Jun 22 2015 *)
PROG
(PARI) a(n)=if(n<1, 2*(n==0), if(n%2, 2*a(n-1)-1, 2*a(n-2)^2-1))
CROSSREFS
KEYWORD
nonn,easy,nice
STATUS
approved
An infinite coprime sequence defined by recursion.
(Formerly M2683 N1073)
+0
5
3, 7, 23, 47, 1103, 2207, 2435423, 4870847, 11862575248703, 23725150497407, 281441383062305809756861823, 562882766124611619513723647, 158418504200047111075388369241884118003210485743490303
OFFSET
0,1
COMMENTS
Every term is relatively prime to all others.
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
A. W. F. Edwards, Infinite coprime sequences, Math. Gaz., 48 (1964), 416-422.
A. W. F. Edwards, Infinite coprime sequences, Math. Gaz., 48 (1964), 416-422. [Annotated scanned copy]
FORMULA
a(2n+1) = 2*a(2n)+1, a(2n) = (a(2n-1)^2-3)/2, with a(0)=3.
MATHEMATICA
a[n_?OddQ] := a[n] = 2*a[n-1] + 1; a[n_?EvenQ] := a[n] = (a[n-1]^2 - 3)/2; a[0] = 3; Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Jan 25 2013 *)
PROG
(PARI) a(n)=if(n<1, 3*(n==0), if(n%2, 2*a(n-1)+1, (a(n-1)^2-3)/2))
CROSSREFS
KEYWORD
nonn
EXTENSIONS
More terms from Jeffrey Shallit
Edited by Michael Somos, Feb 01 2004
STATUS
approved
Consider the mapping f(x/y) = (x+y)/(2xy) where x/y is a reduced fraction. Beginning with x_0 = 1 and y_0 = 2, repeated application of this mapping produces a sequence of fractions x_n/y_n; a(n) is the n-th numerator.
+0
1
1, 3, 7, 31, 367, 21199, 15311887, 648309901711, 19853227652502777487, 25742087295488761786102488482959, 1022127038655087543344600484892552190865956757100687
OFFSET
0,2
COMMENTS
An infinite coprime sequence defined by recursion.
Every term is relatively prime to all others. - Michael Somos, Feb 01 2004
Note that gcd(x+y,2*x*y) <= gcd(x+y,2)*gcd(x+y,x)*gcd(x+y,y), so gcd(x,y) = 1 implies gcd(x+y,2*x*y) = 1 unless both x,y are odd. As a result, the definition gives x_{n+1} = x_n+y_n and y_{n+1} = 2*(x_n)*(y_n) with x_0 = 1 and y_0 = 2. - Jianing Song, Oct 10 2021
FORMULA
From Jianing Song, Oct 10 2021: (Start)
a(n) = a(n-1) + A081476(n-1) for n >= 1 with a(0) = 1 and A081476(0) = 2.
a(0) = 1, a(n) = a(n-1) + 2^n*a(0)*a(1)*...*a(n-2) for n >= 1.
a(0) = 1, a(1) = 3, a(n) = a(n-1) + 2*a(n-2)*(a(n-1)-a(n-2)) for n >= 2. (End)
EXAMPLE
The n-th application of the mapping produces the fraction x_n/y_n from the fraction x_(n-1)/y_(n-1):
n=1: f(1/2) = (1+2)/(2*1*2) = 3/4 (so a(1)=3);
n=2: f(3/4) = (3+4)/(2*3*4) = 7/24 (so a(2)=7);
n=3: f(7/24) = (7+24)/(2*7*24) = 31/336 (so a(3)=31).
From Jianing Song, Oct 10 2021: (Start)
a(0) = 1;
a(1) = 1 + 2^1 = 3;
a(2) = 3 + 2^2*1 = 7;
a(3) = 7 + 2^3*1*3 = 31;
a(4) = 31 + 2^4*1*3*7 = 367;
a(5) = 367 + 2^5*1*3*7*31 = 21199. (End)
PROG
(PARI) a(n)=local(v); if(n<2, n>0, v=[1, 2]; for(k=2, n, v=[v[1]+v[2], 2*v[1]*v[2]]); v[1])
(PARI) lista(n) = my(v=vector(n+1)); v[1]=1; if(n>=1, v[2]=3); for(k=2, n, v[k+1] = v[k] + 2*v[k-1]*(v[k]-v[k-1])); v \\ Jianing Song, Oct 10 2021
CROSSREFS
The denominators are A081476.
KEYWORD
nonn,frac
AUTHOR
Amarnath Murthy, Mar 24 2003
EXTENSIONS
Corrected and extended by Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 06 2003
Edited by Jon E. Schoenfield, Apr 25 2014
STATUS
approved
Define a pair of sequences by p(0) = 0, q(0) = p(1) = q(1) = 1, q(n+1) = p(n)*q(n-1), p(n+1) = q(n+1) + q(n) for n > 0; then a(n) = q(n) and A064526(n) = p(n).
+0
7
1, 1, 1, 2, 3, 10, 39, 490, 20631, 10349290, 213941840151, 2214253254659846890, 473721461633379426414550183191, 1048939288228833100615882755549676600679754298090
OFFSET
0,4
LINKS
Michael Somos and R. Haas, A linked pair of sequences implies the primes are infinite, Amer. Math. Monthly, 110(6) (2003), 539-540.
FORMULA
a(n) = (a(n-1) + a(n-2))*a(n-2) for n >= 2.
Lim_{n -> infinity} a(n)/a(n-1)^phi = 1, where phi = A001622. - Gerald McGarvey, Aug 29 2004
a(n) ~ c^(phi^n), where c = 1.23642417842410860616065684299168229758826316461949675490684055924721259... and phi = A001622 = (1 + sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, May 21 2015
MATHEMATICA
Flatten[{1, RecurrenceTable[{a[n]==(a[n-1]+a[n-2])*a[n-2], a[1]==1, a[2]==1}, a, {n, 1, 10}]}] (* Vaclav Kotesovec, May 21 2015 *)
PROG
(PARI) {a(n) = local(v); if( n<3, n>=0, v = [1, 1]; for( k=3, n, v = [v[2], v[1] * (v[1] + v[2])]); v[2])}
(PARI) {a(n) = if( n<3, n>=0, (a(n-1) + a(n-2)) * a(n-2))}
KEYWORD
nonn,easy
AUTHOR
Michael Somos, Sep 20 2001
STATUS
approved
Let u(k), v(k), w(k) satisfy the recursions u(1) = v(1) = w(1) = 1, u(k+1) = u(k) + v(k) + w(k), v(k+1) = u(k)*v(k) + v(k)*w(k) + w(k)*u(k), and w(k+1) = u(k)*v(k)*w(k) for k >= 1; then a(n) = w(n).
+0
8
1, 1, 9, 945, 8876385, 3689952451492545, 98367948795841301790914258556831105, 3882894052327309905582682317031276840071039865528864289025562807872336355445505
OFFSET
1,3
COMMENTS
Next term is too large to include.
LINKS
Petros Hadjicostas, Table of n, a(n) for n = 1..11
FORMULA
Let C be the positive root of x^3 + x^2 - 2*x - 1 = 0: that is, C = 1.246979603717... = A255249. Then Lim_{n -> infinity} u(n)^(C+1)/w(n)= Lim_{n -> infinity} v(n)^C/w(n) = Lim_{n -> infinity} u(n)^B/v(n) = 1 with B = C + 1 - 1/(1 + C) = 1.8019377... = A160389. [corrected by Vaclav Kotesovec, May 11 2020]
a(n) ~ gw^((C + 1)^n), where C is defined above and gw = 1.321128752475732548... The relation between constants gu (see A070231), gv (see A070234) and gw is gu^(1 + C) = gv^C = gw. - Vaclav Kotesovec, May 11 2020
MATHEMATICA
u[1] = 1; v[1] = 1; a[1] = 1; u[k_] := u[k] = u[k - 1] + v[k - 1] + a[k - 1]; v[k_] := v[k] = u[k - 1]*v[k - 1] + v[k - 1]*a[k - 1] + a[k - 1]*u[k - 1]; a[k_] := a[k] = u[k - 1]*v[k - 1]*a[k - 1]; Table[a[n], {n, 1, 9}] (* Vaclav Kotesovec, May 11 2020 *)
PROG
(PARI) lista(nn) = {my(u = vector(nn)); my(v = vector(nn)); my(w = vector(nn)); u[1] = 1; v[1] = 1; w[1] = 1; for (n=2, nn, u[n] = u[n-1] + v[n-1] + w[n-1]; v[n] = u[n-1]*v[n-1] + v[n-1]*w[n-1] + w[n-1]*u[n-1]; w[n] = u[n-1]*v[n-1]*w[n-1]; ); w; } \\ Petros Hadjicostas, May 11 2020
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Benoit Cloitre, May 08 2002
STATUS
approved
Let u(k), v(k), w(k) satisfy the recursions u(1) = v(1) = w(1) = 1, u(k+1) = u(k) + v(k) + w(k), v(k+1) = u(k)*v(k) + v(k)*w(k) + w(k)*u(k), and w(k+1) = u(k)*v(k)*w(k) for k >= 1; then a(n) = u(n).
+0
8
1, 3, 7, 31, 1279, 9202687, 3692849258577919, 98367959484921734629696721986125823, 3882894052327310957045599009145809243674851356642054390303168725061781159935999
OFFSET
1,2
LINKS
Petros Hadjicostas, Table of n, a(n) for n = 1..12
FORMULA
Let C be the positive root of x^3 + x^2 - 2*x - 1 = 0; that is, C = 1.246979603717... = A255249. Then Lim_{n -> infinity} u(n)^(C+1)/w(n)= Lim_{n -> infinity} v(n)^C/w(n) = Lim_{n -> infinity} u(n)^B/v(n) = 1 with B = C + 1 - 1/(1 + C) = 1.8019377... = A160389. [corrected by Vaclav Kotesovec, May 11 2020]
a(n) ~ gu^((1 + C)^n), where C is defined above and gu = 1.131945853718244297... The relation between constants gu, gv (see A070234) and gw (see A070233) is gu^(1 + C) = gv^C = gw. - Vaclav Kotesovec, May 11 2020
MATHEMATICA
a[1] = 1; v[1] = 1; w[1] = 1; a[k_] := a[k] = a[k - 1] + v[k - 1] + w[k - 1]; v[k_] := v[k] = a[k - 1]*v[k - 1] + v[k - 1]*w[k - 1] + w[k - 1]*a[k - 1]; w[k_] := w[k] = a[k - 1]*v[k - 1]*w[k - 1]; Table[a[n], {n, 1, 9}] (* Vaclav Kotesovec, May 11 2020 *)
PROG
(PARI) lista(nn) = {my(u = vector(nn)); my(v = vector(nn)); my(w = vector(nn)); u[1] = 1; v[1] = 1; w[1] = 1; for (n=2, nn, u[n] = u[n-1] + v[n-1] + w[n-1]; v[n] = u[n-1]*v[n-1] + v[n-1]*w[n-1] + w[n-1]*u[n-1]; w[n] = u[n-1]*v[n-1]*w[n-1]; ); u; } \\ Petros Hadjicostas, May 11 2020
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Benoit Cloitre, May 08 2002
STATUS
approved
Let u(k), v(k), w(k) satisfy the recursions u(1) = v(1) = w(1) = 1, u(k+1) = u(k) + v(k) + w(k), v(k+1) = u(k)*v(k) + v(k)*w(k) + w(k)*u(k), and w(k+1) = u(k)*v(k)*w(k); then a(n) = v(n).
+0
8
1, 3, 15, 303, 325023, 2896797882687, 10689080432835089614170716799, 1051462916692114532403603811392745230616355871287492722818364671
OFFSET
1,2
LINKS
Petros Hadjicostas, Table of n, a(n) for n = 1..11
FORMULA
Let C be the positive root of x^3 + x^2 - 2*x - 1 = 0; that is, C = 1.246979603717... = A255249. Then Lim_{n -> infinity} u(n)^(C+1)/w(n) = Lim_{n -> infinity} v(n)^C/w(n) = Lim_{n -> infinity} u(n)^B/v(n) = 1 with B = C + 1 - 1/(1 + C) = 1.8019377... = A160389. [corrected by Vaclav Kotesovec, May 11 2020]
a(n) ~ gv^((C + 1)^n), where C is defined above and gv = 1.250231610564761084... The relation between constants gu (see A070231), gv and gw (see A070233) is gu^(1 + C) = gv^C = gw. - Vaclav Kotesovec, May 11 2020
MATHEMATICA
u[1] = 1; a[1] = 1; w[1] = 1; u[k_] := u[k] = u[k - 1] + a[k - 1] + w[k - 1]; a[k_] := a[k] = u[k - 1]*a[k - 1] + a[k - 1]*w[k - 1] + w[k - 1]*u[k - 1]; w[k_] := w[k] = u[k - 1]*a[k - 1]*w[k - 1]; Table[a[n], {n, 1, 9}] (* Vaclav Kotesovec, May 11 2020 *)
PROG
(PARI)_lista(nn) = {my(u = vector(nn)); my(v = vector(nn)); my(w = vector(nn)); u[1] = 1; v[1] = 1; w[1] = 1; for (n=2, nn, u[n] = u[n-1] + v[n-1] + w[n-1]; v[n] = u[n-1]*v[n-1] + v[n-1]*w[n-1] + w[n-1]*u[n-1]; w[n] = u[n-1]*v[n-1]*w[n-1]; ); v; } \\ Petros Hadjicostas, May 11 2020
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Benoit Cloitre, May 08 2002
STATUS
approved

Search completed in 0.011 seconds