[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a064304 -id:a064304
     Sort: relevance | references | number | modified | created      Format: long | short | data
Triangle composed of generalized Catalan numbers.
+10
25
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 5, 3, 1, 1, 1, 14, 13, 4, 1, 1, 1, 42, 67, 25, 5, 1, 1, 1, 132, 381, 190, 41, 6, 1, 1, 1, 429, 2307, 1606, 413, 61, 7, 1, 1, 1, 1430, 14589, 14506, 4641, 766, 85, 8, 1, 1, 1, 4862, 95235, 137089, 55797, 10746, 1279, 113, 9, 1, 1
OFFSET
0,8
COMMENTS
The column m sequence (without leading zeros and the first 1) appears in the Derrida et al. 1992 reference as Z_{N}=Y_{N}(N+1), N >=0, for alpha = m, beta = 1 (or alpha = 1, beta = m). In the Derrida et al. 1993 reference the formula in eq. (39) gives Z_{N}(alpha,beta)/(alpha*beta)^N for N>=1.
LINKS
B. Derrida, E. Domany, and D. Mukamel, An exact solution of a one-dimensional asymmetric exclusion model with open boundaries, J. Stat. Phys. 69, 1992, 667-687; eqs. (20), (21), p. 672.
B. Derrida, M. R. Evans, V. Hakim, and V. Pasquier, Exact solution of a 1D asymmetric exclusion model using a matrix formulation, J. Phys. A 26, 1993, 1493-1517; eq. (39), p. 1501, also appendix A1, (A12) p. 1513.
FORMULA
G.f. for column m: (x^m)/(1-x*c(m*x))= (x^m)*((m-1)+m*x*c(m*x))/(m-1+x) with the g.f. c(x) of Catalan numbers A000108.
T(n, m) = Sum_{j=0..n-m-1} ((n-m-j)*binomial(n-m-1+j, j)*(m^j)/(n-m) or T(n, m) = (1/(1-m))^(n-m)*(1 - m*Sum_{j=0..n-m-1} C(j)*(m*(1-m))^j ), for n - m >= 1, T(n, n) = 1, T(n, m) = 0 if n<m; with C(k) = A000108(k) (Catalan).
EXAMPLE
Triangle begins:
1;
1, 1;
1, 1, 1;
1, 2, 1, 1;
1, 5, 3, 1, 1;
1, 14, 13, 4, 1, 1;
1, 42, 67, 25, 5, 1, 1;
1, 132, 381, 190, 41, 6, 1, 1;
1, 429, 2307, 1606, 413, 61, 7, 1, 1;
1, 1430, 14589, 14506, 4641, 766, 85, 8, 1, 1;
MATHEMATICA
T[n_, 0] = 1; T[n_, 1] := CatalanNumber[n - 1]; T[n_, n_] = 1; T[n_, m_] := (1/(1 - m))^(n - m)*(1 - m*Sum[ CatalanNumber[k]*(m*(1 - m))^k, {k, 0, n - m - 1}]); Table[ T[n, m], {n, 0, 10}, {m, 0, n}] // Flatten (* Jean-François Alcover, Jul 05 2013 *)
PROG
(Magma)
function A064094(n, k)
if k eq 0 or k eq n then return 1;
else return (&+[(n-k-j)*Binomial(n-k-1+j, j)*k^j: j in [0..n-k-1]])/(n-k);
end if;
end function;
[A064094(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 27 2024
(SageMath)
def A064094(n, k):
if (k==0 or k==n): return 1
else: return sum((n-k-j)*binomial(n-k-1+j, j)*k^j for j in range(n-k))//(n-k)
flatten([[A064094(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Sep 27 2024
CROSSREFS
Columns (without leading zeros): A000012 (k=0), A000108 (k=1), A064062 (k=2), A064063 (k=3), A064087 (k=4), A064088 (k=5), A064089 (k=6), A064090 (k=7), A064091 (k=8), A064092 (k=9), A064093 (k=10).
Cf. A064095 (row sums).
KEYWORD
nonn,easy,tabl
AUTHOR
Wolfdieter Lang, Sep 13 2001
STATUS
approved
A(n, k) = hypergeometric([-k, k+1], [-k-1], n), square array read by ascending antidiagonals for n,k >= 0.
+10
4
1, 1, 1, 1, 2, 1, 1, 3, 5, 1, 1, 4, 13, 14, 1, 1, 5, 25, 67, 42, 1, 1, 6, 41, 190, 381, 132, 1, 1, 7, 61, 413, 1606, 2307, 429, 1, 1, 8, 85, 766, 4641, 14506, 14589, 1430, 1, 1, 9, 113, 1279, 10746, 55797, 137089, 95235, 4862, 1
OFFSET
0,5
COMMENTS
Conjecture: A(n, k) is odd if and only if n is even or (n is odd and k + 2 = 2^j for some j > 0).
LINKS
J. Abate, W. Whitt, Brownian Motion and the Generalized Catalan Numbers, J. Int. Seq. 14 (2011).
B. Derrida, E. Domany and D. Mukamel, An exact solution of a one-dimensional asymmetric exclusion model with open boundaries, J. Stat. Phys. 69, 1992, 667-687.
FORMULA
A(n, k) = [x^k] 1/(x - x^2*C(n*x)) if n > 0 and C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the generating function of the Catalan numbers A000108.
A(n, k) = Sum_{j=0..k} (binomial(2*k-j, k) - binomial(2*k-j, k+1))*n^(k-j).
A(n, k) = Sum_{j=0..k} binomial(k + j, k)*(1 - j/(k + 1))*n^j (cf. A009766).
A(n, k) = 1 + Sum_{j=0..k-1} ((1+j)*binomial(2*k-j, k+1)/(k-j))*n^(k-j).
A(n, k) = (1/(2*Pi))*Integral_{x=0..4*n} (sqrt(x*(4*n-x))*x^k)/(1+(n-1)*x), n>0.
A(n, k) ~ ((4*n)^k/(Pi^(1/2)*k^(3/2)))*(1+1/(2*n-1))^2.
If we shift the series f with constant term 1 to the right, invert it with respect to composition and shift the result back to the left then we call this the 'pseudo reversion' of f, prev(f). Row n of the array gives the coefficients of the pseudo reversion of f = (1 + (n - 1)*x)/((1 - x)^2) with an additional inversion of sign. Note that f is not revertible. See also the Sage implementation below.
A(n, k) = [x^k] prev((1 + (n - 1)*(-x))/(1 - (-x))^2).
A(n, k) = [x^(k+1)] cf(n, x) where cf(n, x) = K_{i>=1} c(i)/b(i) in the notation of Gauß with b(i) = 1, c(1) = 1, c(2) = -x and c(i) = -n*x for i > 2.
For a recurrence see the Maple section.
EXAMPLE
Array starts:
[n\k 0 1 2 3 4 5 6 7 ...]
[0] 1, 1, 1, 1, 1, 1, 1, 1, ... A000012
[1] 1, 2, 5, 14, 42, 132, 429, 1430, ... A000108
[2] 1, 3, 13, 67, 381, 2307, 14589, 95235, ... A064062
[3] 1, 4, 25, 190, 1606, 14506, 137089, 1338790, ... A064063
[4] 1, 5, 41, 413, 4641, 55797, 702297, 9137549, ... A064087
[5] 1, 6, 61, 766, 10746, 161376, 2537781, 41260086, ... A064088
[6] 1, 7, 85, 1279, 21517, 387607, 7312789, 142648495, ... A064089
[7] 1, 8, 113, 1982, 38886, 817062, 17981769, 409186310, ... A064090
[8] 1, 9, 145, 2905, 65121, 1563561, 39322929, 1022586105, ... A064091
.
Seen as a triangle (by reading ascending antidiagonals):
1
1, 1
1, 2, 1
1, 3, 5, 1
1, 4, 13, 14, 1
1, 5, 25, 67, 42, 1
1, 6, 41, 190, 381, 132, 1
MAPLE
# The function ballot is defined in A238762.
A := (n, k) -> add(ballot(2*j, 2*k)*n^j, j=0..k):
for n from 0 to 6 do seq(A(n, k), k=0..9) od;
# Or by recurrence:
A := proc(n, k) option remember;
if n = 1 then return `if`(k = 0, 1, (4*k + 2)*A(1, k-1)/(k + 2)) fi:
if k < 2 then return [1, n+1][k+1] fi; n*(4*k - 2);
((%*(n - 1) - k - 1)*A(n, k-1) + %*A(n, k-2))/((n - 1)*(k + 1)) end:
for n from 0 to 6 do seq(A(n, k), k=0..9) od;
# Alternative:
Arow := proc(n, len) # Function REVERT is in Sloane's 'Transforms'.
[seq(1 + n*k, k=0..len-1)]; REVERT(%); seq((-1)^k*%[k+1], k=0..len-1) end:
for n from 0 to 8 do Arow(n, 8) od;
MATHEMATICA
A[n_, k_] := Hypergeometric2F1[-k, k + 1, -k - 1, n];
Table[A[n, k], {n, 0, 8}, {k, 0, 8}]
(* Alternative: *)
prev[f_, n_] := InverseSeries[Series[-x f, {x, 0, n}]]/(-x);
f[n_, x_] := (1 + (n - 1) x)/((1 - x)^2);
For[n = 0, n < 9, n++, Print[CoefficientList[prev[f[n, x], 8], x]]]
(* Continued fraction: *)
num[k_, n_] := If[k < 2, 1, If[k == 2, -x, -n x]];
cf[n_, len_] := ContinuedFractionK[num[k, n], 1, {k, len + 2}];
Arow[n_, len_] := Rest[CoefficientList[Series[cf[n, len], {x, 0, len}], x]];
For[n = 0, n < 9, n++, Print[Arow[n, 8]]]
PROG
(Sage) # Valid for n > 0.
def genCatalan(n): return SR(1/(x- x^2*(1 - sqrt(1 - 4*x*n))/(2*x*n)))
for n in (1..8): print(genCatalan(n).series(x).list())
# Alternative:
def pseudo_reversion(g, invsign=false):
if invsign: g = g.subs(x=-x)
g = g.shift(1)
g = g.reverse()
g = g.shift(-1)
return g
R.<x> = PowerSeriesRing(ZZ)
for n in (0..6):
f = (1+(n-1)*x)/((1-x)^2)
s = pseudo_reversion(f, true)
print(s.list())
(PARI)
{A(n, k) = polcoeff((1/x)*serreverse(x*((1+(n-1)*(-x))/((1-(-x))^2)+x*O(x^k))), k)}
for(n=0, 8, for(k=0, 8, print1(A(n, k), ", ")); print())
CROSSREFS
Diagonals: A323209 (main), A323208 (sup main), A323217 (sub main).
Sums of antidiagonals: A323207
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Feb 21 2019
STATUS
approved
Ninth diagonal of triangle A064094.
+10
3
1, 1430, 95235, 1338790, 9137549, 41260086, 142648495, 409186310, 1022586105, 2298558934, 4750427771, 9170347110, 16730290885, 29104970870, 48618847719, 78419396806, 122678791025, 186826162710
OFFSET
0,2
LINKS
FORMULA
a(n) = 1 + 7*n + 27*n^2 + 75*n^3 + 165*n^4 + 297*n^5 + 429*n^6 + 429*n^7, compare to row n = 7 of Catalan triangle A009766.
G.f.: (1 + 1422*x + 83823*x^2 + 616894*x^3 + 1013799*x^4 + 412698*x^5 + 33337*x^6 + 186*x^7)/(1 - x)^8.
E.g.f.: exp(x)*(1 + 1429*x + 46188*x^2 + 176229*x^3 + 181170*x^4 + 66792*x^5 + 9438*x^6 + 429*x^7). - Stefano Spezia, Jul 24 2022
MATHEMATICA
CoefficientList[Series[(1 + 1422 x + 83823 x^2 + 616894 x^3 + 1013799 x^4 + 412698 x^5 + 33337 x^6 + 186 x^7)/(1 - x)^8, {x, 0, 40}], x] (* Vincenzo Librandi, Apr 15 2014 *)
CROSSREFS
Cf. A009766, A064094, A064304 (eighth diagonal).
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Sep 13 2001
STATUS
approved

Search completed in 0.006 seconds