[go: up one dir, main page]

login
Search: a053810 -id:a053810
     Sort: relevance | references | number | modified | created      Format: long | short | data
Primes (in order) occurring in A053810.
+20
4
2, 2, 3, 5, 3, 2, 7, 11, 5, 2, 13, 3, 17, 7, 19, 23, 29, 31, 11, 37, 41, 43, 2, 3, 13, 47, 53, 5, 59, 61, 67, 17, 71, 73, 79, 19, 83, 89, 2, 97, 101, 103, 107, 109, 23, 113, 127, 7, 131, 137, 139, 149, 151, 29, 157, 163, 167, 31, 173, 179, 181, 191, 193, 197, 199, 211, 223
OFFSET
1,1
LINKS
FORMULA
a(n) = A006530(A053810(n)) = A020639(A053810(n)). - David Wasserman, Feb 17 2006
a(n) = A053810(n)^(1/A053812(n)). - Amiram Eldar, Nov 21 2020
PROG
(PARI) LIM = prime(80)^2; v = vector(400); count = 0; forprime (p = 2, prime(80), x = 2; while (p^x <= LIM, count++; v[count] = p^x; x = nextprime(x + 1))); v = vecsort(vector(count, i, v[i])); A = vector(count); for (i = 1, count, f = factor(v[i]); A[i] = f[1, 1]); A \\ David Wasserman, Feb 17 2006
(Python)
from sympy import primepi, integer_nthroot, primerange, primefactors
def A053811(n):
def f(x): return int(n-1+x-sum(primepi(integer_nthroot(x, p)[0]) for p in primerange(x.bit_length())))
kmin, kmax = 1, 2
while f(kmax) >= kmax:
kmax <<= 1
while True:
kmid = kmax+kmin>>1
if f(kmid) < kmid:
kmax = kmid
else:
kmin = kmid
if kmax-kmin <= 1:
break
return primefactors(kmax)[0] # Chai Wah Wu, Aug 13 2024
KEYWORD
easy,nonn
AUTHOR
Henry Bottomley, Mar 28 2000
EXTENSIONS
More terms from David Wasserman, Feb 17 2006
Offset corrected by Amiram Eldar, Nov 21 2020
STATUS
approved
Exponents occurring in A053810.
+20
4
2, 3, 2, 2, 3, 5, 2, 2, 3, 7, 2, 5, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 11, 7, 3, 2, 2, 5, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 13, 2, 2, 2, 2, 2, 3, 2, 2, 5, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 7, 2, 3, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 17, 2, 2, 2, 2, 3, 2, 2, 2
OFFSET
1,1
LINKS
FORMULA
a(n) = A001222(A053810(n)). - David Wasserman, Feb 17 2006
a(n) = log(A053810(n))/log(A053811(n)). - Amiram Eldar, Nov 21 2020
PROG
(PARI) LIM = prime(80)^2; v = vector(400); count = 0; forprime (p = 2, prime(80), x = 2; while (p^x <= LIM, count++; v[count] = p^x; x = nextprime(x + 1))); v = vecsort(vector(count, i, v[i])); vector(count, i, bigomega(v[i])) \\ David Wasserman, Feb 17 2006
(Python)
from sympy import primepi, integer_nthroot, primerange, factorint
def A053812(n):
def f(x): return int(n-1+x-sum(primepi(integer_nthroot(x, p)[0]) for p in primerange(x.bit_length())))
kmin, kmax = 1, 2
while f(kmax) >= kmax:
kmax <<= 1
while True:
kmid = kmax+kmin>>1
if f(kmid) < kmid:
kmax = kmid
else:
kmin = kmid
if kmax-kmin <= 1:
break
return list(factorint(kmax).values())[0] # Chai Wah Wu, Aug 13 2024
KEYWORD
nonn
AUTHOR
Henry Bottomley, Mar 28 2000
EXTENSIONS
More terms from David Wasserman, Feb 17 2006
Offset corrected by Amiram Eldar, Nov 21 2020
STATUS
approved
The number of prime powers of prime numbers (A053810) that divide n.
+20
4
0, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 1, 0, 0, 0, 2, 1, 0, 2, 1, 0, 0, 0, 3, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 1, 1, 0, 0, 2, 1, 1, 0, 1, 0, 2, 0, 2, 0, 0, 0, 1, 0, 0, 1, 3, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 1, 1, 0, 0, 0, 2, 2, 0, 0, 1, 0, 0, 0
OFFSET
1,8
COMMENTS
a(n) depends only on the prime signature of n.
Every nonnegative number appears in the sequence of record values. k >= 1 first occurs at n = 2^prime(k) (A034785).
LINKS
FORMULA
Additive with a(p^e) = A000720(e).
a(n) = 0 if and only if n is squarefree (A005117).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{p prime} P(p) = 0.67167522222173297323..., where P(s) is the prime zeta function.
MATHEMATICA
f[p_, e_] := PrimePi[e]; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100]
PROG
(PARI) a(n) = {my(f = factor(n)); sum(i = 1, #f~, primepi(f[i, 2])); }
KEYWORD
nonn,easy
AUTHOR
Amiram Eldar, Oct 31 2023
STATUS
approved
Take the primes raised to prime exponents, arranged in numerical order (A053810). If A053810(n) = r(n)^q(n), where r(n) and q(n) are primes, then a(n) = q(n)^r(n).
+20
2
4, 9, 8, 32, 27, 25, 128, 2048, 243, 49, 8192, 125, 131072, 2187, 524288, 8388608, 536870912, 2147483648, 177147, 137438953472, 2199023255552, 8796093022208, 121, 343, 1594323, 140737488355328, 9007199254740992, 3125, 576460752303423488, 2305843009213693952, 147573952589676412928
OFFSET
1,1
COMMENTS
a(n) = A053812(n)^A053811(n).
PROG
(PARI) lista(nn) = for(k=1, nn, if(isprime(isprimepower(k, &p)), print1(bigomega(k)^p, ", "))); \\ Jinyuan Wang, Feb 25 2020
(Python)
from math import prod
from sympy import primepi, integer_nthroot, primerange, factorint
def A145521(n):
def f(x): return int(n-1+x-sum(primepi(integer_nthroot(x, p)[0]) for p in primerange(x.bit_length())))
kmin, kmax = 1, 2
while f(kmax) >= kmax:
kmax <<= 1
while True:
kmid = kmax+kmin>>1
if f(kmid) < kmid:
kmax = kmid
else:
kmin = kmid
if kmax-kmin <= 1:
break
return prod(e**p for p, e in factorint(kmax).items()) # Chai Wah Wu, Aug 13 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Leroy Quet, Oct 12 2008
EXTENSIONS
Extended by Ray Chandler, Nov 01 2008
More terms from Jinyuan Wang, Feb 25 2020
STATUS
approved
a(n) is such that A145521(n) = A053810(a(n)).
+20
2
1, 3, 2, 6, 5, 4, 10, 23, 12, 7, 39, 9, 97, 24, 164, 484, 2759, 5044, 109, 32334, 114605, 216960, 8, 14, 252, 785135, 5503557, 28, 39222428, 75703838, 548300521, 1496, 2063337476, 4008153424, 29523940595, 3858, 112174606866, 834662735468, 11, 12216544412251
OFFSET
1,2
COMMENTS
This sequence is a permutation of the positive integers. It is its own inverse permutation.
FORMULA
a(n) = Sum_{primes p, 2^p <= A145521(n)} A000720(floor(A145521(n)^(1/p))).
Also, if A145521(n) = 2^k then a(n) = A060967(k) + Sum_{primes p, 3 <= p <= k} A000720(floor(2^(k/p))). - Jason Yuen, Jan 31 2024
EXAMPLE
The primes raised to prime exponents form the sequence, when the terms are arranged in numerical order, 4,8,9,25,27,32,49,121,125,128,...(sequence A053810). The 10th term is 128, which is 2^7. So the 10th term of sequence A145521 is 7^2 = 49. 49 is the 7th term of A053810. So a(10) = 7 and a(7) = 10.
PROG
(PARI) lista(nn) = {my(c, m); for(k=1, nn, if(isprime(isprimepower(k, &p)), c=0; m=bigomega(k)^p; forprime(q=2, sqrtint(m), c+=primepi(logint(m, q))); print1(c, ", "))); } \\ Jinyuan Wang, Feb 25 2020
(Python)
from itertools import count
from sympy import integer_nthroot, isprime, primepi
def A145522(n):
total = 0
for p in count(2):
if 2**p > A145521(n): break
if isprime(p): total += primepi(integer_nthroot(A145521(n), p)[0])
return total # Jason Yuen, Jan 31 2024
(Python)
from math import prod
from sympy import primepi, integer_nthroot, primerange, factorint
def A145522(n):
def f(x): return int(n+x-sum(primepi(integer_nthroot(x, p)[0]) for p in primerange(x.bit_length())))
m, k = n, f(n)
while m != k:
m, k = k, f(k)
a = prod(e**p for p, e in factorint(m).items())
return sum(primepi(integer_nthroot(a, p)[0]) for p in primerange(a.bit_length())) # Chai Wah Wu, Aug 10 2024
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Leroy Quet, Oct 12 2008
EXTENSIONS
a(11)-a(28) from Ray Chandler, Nov 01 2008
a(29)-a(32) from Jinyuan Wang, Feb 25 2020
a(33)-a(39) from Jason Yuen, Jan 31 2024
a(40) from Chai Wah Wu, Aug 10 2024
STATUS
approved
Differences between consecutive prime powers of primes (see A053810).
+20
1
4, 1, 16, 2, 5, 17, 72, 4, 3, 41, 74, 46, 54, 18, 168, 312, 120, 370, 38, 312, 168, 199, 139, 10, 12, 600, 316, 356, 240, 768, 424, 128, 288, 912, 618, 30, 1032, 271, 1217, 792, 408, 840, 432, 286, 602, 3360, 678, 354, 1608, 552, 2880, 600, 1588, 260, 1920, 1320, 1902
OFFSET
1,1
FORMULA
a(n) = A053810(n+1) - A053810(n).
EXAMPLE
11^2=121 and 5^3=125 are members with index 8 and 9 in A053810. So a(8)=125-121=4.
PROG
(Python)
from sympy import primepi, integer_nthroot, primerange
def A062780(n):
def f(x): return int(n+x-sum(primepi(integer_nthroot(x, p)[0]) for p in primerange(x.bit_length())))
def bisection(f, kmin=0, kmax=1):
while f(kmax) > kmax: kmax <<= 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
return -(a:=bisection(f, n, n))+bisection(lambda x:f(x)+1, a, a) # Chai Wah Wu, Sep 12 2024
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Rainer Rosenthal, Jul 18 2001
EXTENSIONS
Edited and extended by Ray Chandler, Oct 30 2008
STATUS
approved
Smallest prime p such that p - 2^e is also prime power (A053810) in exactly n cases for nonnegative integers e.
+20
0
149, 2, 5, 11, 83, 829, 3331, 32941, 176417, 854929, 2233531, 12699571, 47924959, 763597201
OFFSET
0,1
COMMENTS
first case when A115230 equals n.
0: 149, 331, 373, 509, 701, 757, 809, 877, 907, 997, 1019, ...;
1: 2, 3, 127, 163, 179, 191, 193, 223, 239, 251, 269, 311, ...;
2: 5, 7, 23, 37, 47, 53, 59, 67, 71, 79, 97, 101, 103, ...;
3: 11, 13, 17, 19, 29, 31, 41, 43, 61, 73, 89, 131, 137, ...;
4: 83, 113, 139, 181, 199, 293, 353, 571, 593, 601, 619, ...;
5: 829, 1217, 1487, 2131, 2341, 2551, 2971, 4051, 4261, ...;
6: 3331, 12109, 14551, 17393, 18233, 22279, 22307, 22741, ...;
7: 32941, 34369, 44029, 49433, 53633, 67189, 95717, 99833, ...;
8: 176417, 304771, 314723, 314779, 349667, 414707, 451937, ...;
9: 854929, 1297651, 1328927, 1784723, 2164433, 2488909, ...;
10: 2233531, 6026089, 7475389, 7623229, 9644911, 10019551, ...;
11: 12699571, 18464123, 52849879, 78127339, 79303579, 84397463, ...;
12: 47924959, 153309649, 204797059, 248685923, 273865219, ...;
13: 763597201, ...;
...
FORMULA
a(n) <= A244917(n) for n>0.
MATHEMATICA
f[p_] := Length@ Table[q = p - 2^exp; If[ PrimeNu@ q == 1, {q}, Sequence @@ {}], {exp, 0, Floor@ Log2@ p}]; t = Table[0, {20}]; p = 2; While[p < 1000000000, a = f[p] +1; If[a < 101 && t[[a]] == 0, t[[a]] == p; Print[{a -1, p}]]; p = NextPrime@ p]; t
CROSSREFS
Cf. A115230, A244917, zeroth row A095842, first row A095841.
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Oct 06 2014
STATUS
approved
Number of ways to fill a matrix with the parts of the integer partition with Heinz number n.
+10
17
1, 1, 1, 2, 1, 4, 1, 2, 2, 4, 1, 6, 1, 4, 4, 3, 1, 6, 1, 6, 4, 4, 1, 12, 2, 4, 2, 6, 1, 12, 1, 2, 4, 4, 4, 18, 1, 4, 4, 12, 1, 12, 1, 6, 6, 4, 1, 10, 2, 6, 4, 6, 1, 12, 4, 12, 4, 4, 1, 36, 1, 4, 6, 4, 4, 12, 1, 6, 4, 12, 1, 20, 1, 4, 6, 6, 4, 12, 1, 10, 3, 4
OFFSET
1,4
COMMENTS
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
FORMULA
a(n) = A008480(n) * A000005(A001222(n)).
EXAMPLE
The a(24) = 12 matrices whose entries are (2,1,1,1):
[1 1 1 2] [1 1 2 1] [1 2 1 1] [2 1 1 1]
.
[1 1] [1 1] [1 2] [2 1]
[1 2] [2 1] [1 1] [1 1]
.
[1] [1] [1] [2]
[1] [1] [2] [1]
[1] [2] [1] [1]
[2] [1] [1] [1]
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
ptnmats[n_]:=Union@@Permutations/@Select[Union@@(Tuples[Permutations/@#]&/@Map[primeMS, facs[n], {2}]), SameQ@@Length/@#&];
Array[Length[ptnmats[#]]&, 100]
CROSSREFS
Positions of 1's are one and prime numbers A008578.
Positions of 2's are primes to prime powers A053810.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jan 12 2019
STATUS
approved
Sum of non-exponential divisors of n.
+10
13
1, 1, 1, 1, 1, 6, 1, 5, 1, 8, 1, 10, 1, 10, 9, 9, 1, 15, 1, 12, 11, 14, 1, 30, 1, 16, 10, 14, 1, 42, 1, 29, 15, 20, 13, 19, 1, 22, 17, 40, 1, 54, 1, 18, 18, 26, 1, 58, 1, 33, 21, 20, 1, 60, 17, 50, 23, 32, 1, 78, 1, 34, 20, 49, 19, 78, 1, 24, 27, 74, 1, 75, 1, 40, 34, 26, 19, 90, 1, 76, 28
OFFSET
1,6
COMMENTS
The non-exponential divisors d|n of a number n = p(i)^e(i) are divisors d not of the form p(i)^s(i), s(i)|e(i) for all i.
LINKS
FORMULA
a(n) = A000203(n) - A051377(n) for n >= 2.
a(1) = 1, a(p) = 1, a(p*q) = 1 + p + q, a(p*q*...*z) = (p + 1)*(q + 1)*...*(z + 1) - p*q*...*z, for p, q,..,z = primes (A000040), p*q = product of two distinct primes (A006881), p*q*...*z = product of k (k > 0) distinct primes (A120944).
a(p^k) = (p^(k+1)-1)/(p-1)- Sum_{d|k} p^d for p = primes (A000040), p^k = prime powers A000961(n>1), k = natural numbers (A000027)>
a(p^q) = 1+(p^1-p^1)+p^2+p^3+...+p^(q-1), for p, q = primes (A000040), p^q = prime powers of primes (A053810).
EXAMPLE
a(8) = A000203(8) - A051377(8) = 15 - 10 = 5. a(8) = a(2^3) = (2^4-1)/(2-1) - (2^1+2^3) = 5.
MAPLE
lpowp := proc(n, p) local e; for e from 0 do if n mod p^(e+1) <> 0 then RETURN(e) ; fi; od: end:
expdvs := proc(n) local a, d, nfcts, b, f, iseDiv ; a := {} ; nfcts := ifactors(n)[2] ; for d in ( numtheory[divisors](n) minus {1} ) do iseDiv := true; for f in nfcts do b := lpowp(d, op(1, f) ) ; if b = 0 or op(2, f) mod b <> 0 then iseDiv := false; fi; od: if iseDiv then a := a union {d} ; fi; od: a ; end proc:
A051377 := proc(n) local k ; add( k, k = expdvs(n)) ; end: A160135 := proc(n) if n = 1 then 1; else numtheory[sigma][1](n)-A051377(n) ; fi; end: seq(A160135(n), n=1..120) ; # R. J. Mathar, May 08 2009
MATHEMATICA
esigma[n_] := Times @@ (Sum[First[#]^d, {d, Divisors[Last[#]]}] &) /@ FactorInteger[n]; a[1] = 1; a[n_] := DivisorSigma[1, n] - esigma[n]; Array[a, 100] (* Amiram Eldar, Oct 26 2021 after Jean-François Alcover at A051377 *)
PROG
(PARI)
A051377(n) = { my(f=factor(n)); prod(i=1, #f[, 1], sumdiv(f[i, 2], d, f[i, 1]^d)); }; \\ From A051377
A160135(n) = if(1==n, n, sigma(n) - A051377(n)); \\ Antti Karttunen, Mar 04 2018
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, May 02 2009
EXTENSIONS
Edited by R. J. Mathar, May 08 2009
STATUS
approved
Squares and cubes of primes.
+10
12
4, 8, 9, 25, 27, 49, 121, 125, 169, 289, 343, 361, 529, 841, 961, 1331, 1369, 1681, 1849, 2197, 2209, 2809, 3481, 3721, 4489, 4913, 5041, 5329, 6241, 6859, 6889, 7921, 9409, 10201, 10609, 11449, 11881, 12167, 12769, 16129, 17161, 18769, 19321, 22201
OFFSET
1,1
COMMENTS
Primitive elements for powerful numbers; every powerful is product of these numbers. The representation is not necessarily unique.
FORMULA
A178254(a(n)) = 2. - Reinhard Zumkeller, May 24 2010
Sum_{n>=1} 1/a(n) = P(2) + P(3) = 0.6270100593..., where P is the prime zeta function. - Amiram Eldar, Dec 21 2020
MATHEMATICA
m=30000; Union[Prime[Range[PrimePi[m^(1/2)]]]^2, Prime[Range[PrimePi[m^(1/3)]]]^3] (* Vladimir Joseph Stephan Orlovsky, Apr 11 2011 *)
With[{nn=50}, Take[Union[Flatten[Table[{n^2, n^3}, {n, Prime[Range[ nn]]}]]], nn]] (* Harvey P. Dale, Feb 26 2015 *)
PROG
(PARI) for(n=1, 40000, fm=factor(n); if(matsize(fm)[1]==1&(fm[1, 2]==2||fm[1, 2]==3), print1(n", ")))
(PARI) is(n)=my(k=isprimepower(n)); k && k<4 \\ Charles R Greathouse IV, May 24 2013
(Python)
from math import isqrt
from sympy import primepi, integer_nthroot
def A168363(n):
def f(x): return n+x-primepi(isqrt(x))-primepi(integer_nthroot(x, 3)[0])
m, k = n, f(n)
while m != k:
m, k = k, f(k)
return int(m) # Chai Wah Wu, Aug 09 2024
KEYWORD
nonn
AUTHOR
STATUS
approved

Search completed in 0.020 seconds