[go: up one dir, main page]

login
Search: a052961 -id:a052961
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(0) = 1, a(1) = 2, a(n) = 4*a(n-1) - 2*a(n-2), n >= 2.
(Formerly M1644)
+10
52
1, 2, 6, 20, 68, 232, 792, 2704, 9232, 31520, 107616, 367424, 1254464, 4283008, 14623104, 49926400, 170459392, 581984768, 1987020288, 6784111616, 23162405888, 79081400320, 270000789504, 921840357376, 3147359850496
OFFSET
0,2
COMMENTS
a(n)/a(n-1) approaches 2 + sqrt(2). - Zak Seidov, Oct 12 2002
Number of (s(0), s(1), ..., s(2n)) such that 0 < s(i) < 8 and |s(i) - s(i-1)| = 1 for i = 1,2,...,2n, s(0) = 4, s(2n) = 4. - Herbert Kociemba, Jun 12 2004
a(k) = [M^k]_{2,2}, where M is the following 3 X 3 matrix: M = [1,1,1;1,2,1;1,1,1]. - Simone Severini, Jun 11 2006
a(n-1) counts permutations pi on [n] for which the pairs {i, pi(i)} with i < pi(i), considered as closed intervals [i+1,pi(i)], do not overlap; equivalently, for each i in [n] there is at most one j <= i with pi(j) > i. Counting these permutations by the position of n yields the recurrence relation. - David Callan, Sep 02 2003
a(n) is the sum of (n+1)-th row terms of triangle A140070. - Gary W. Adamson, May 04 2008
The binomial transform is in A083878, the Catalan transform in A084868. - R. J. Mathar, Nov 23 2008
Equals row sums of triangle A152252. - Gary W. Adamson, Nov 30 2008
Counts all paths of length (2*n), n >= 0, starting at the initial node on the path graph P_7, see the second Maple program. - Johannes W. Meijer, May 29 2010
From L. Edson Jeffery, Apr 04 2011: (Start)
Let U_1 and U_3 be the unit-primitive matrices (see [Jeffery])
U_1 = U_(8,1) = [(0,1,0,0); (1,0,1,0); (0,1,0,1); (0,0,2,0)] and
U_3 = U_(8,3) = [(0,0,0,1); (0,0,2,0); (0,2,0,1); (2,0,2,0)]. Then A006012(n) = (1/4) * Trace(U_1^(2*n)) = (1/2^(n+2)) * Trace(U_3^(2*n)). (See also A084130, A001333.) (End)
Pisano period lengths: 1, 1, 8, 1, 24, 8, 6, 1, 24, 24, 120, 8, 168, 6, 24, 1, 8, 24, 360, 24, ... - R. J. Mathar, Aug 10 2012
a(n) is the first superdiagonal of array A228405. - Richard R. Forberg, Sep 02 2013
Conjecture: With offset 1, a(n) is the number of permutations on [n] with no subsequence abcd such that (i) bc are adjacent in position and (ii) max(a,c) < min(b,d). For example, the 4 permutations of [4] not counted by a(4) are 1324, 1423, 2314, 2413. - David Callan, Aug 27 2014
The conjecture of David Callan above is correct - with offset 1, a(n) is the number of permutations on [n] with no subsequence abcd such that (i) bc are adjacent in position and (ii) max(a,c) < min(b,d). - Yonah Biers-Ariel, Jun 27 2017
From Gary W. Adamson, Jul 22 2016: (Start)
A production matrix for the sequence is M =
1, 1, 0, 0, 0, 0, ...
1, 0, 3, 0, 0, 0, ...
1, 0, 0, 3, 0, 0, ...
1, 0, 0, 0, 3, 0, ...
1, 0, 0, 0, 0, 3, ...
...
Take powers of M, extracting the upper left terms; getting the sequence starting: (1, 1, 2, 6, 20, 68, ...).
(End)
From Gary W. Adamson, Jul 24 2016: (Start)
The sequence is the INVERT transform of the powers of 3 prefaced with a "1": (1, 1, 3, 9, 27, ...) and is N=3 in an infinite of analogous sequences starting:
N=1 (A000079): 1, 2, 4, 8, 16, 32, ...
N-2 (A001519): 1, 2, 5, 13, 34, 89, ...
N=3 (A006012): 1, 2, 6, 20, 68, 232, ...
N=4 (A052961): 1, 2, 7, 29, 124, 533, ...
N=5 (A154626): 1, 2, 8, 40, 208, 1088, ...
N=6: 1, 2, 9, 53, 326, 2017, ...
...
(End)
Number of permutations of length n > 0 avoiding the partially ordered pattern (POP) {1>2, 1>3, 4>2, 4>3} of length 4. That is, number of length n permutations having no subsequences of length 4 in which the first and fourth elements are larger than the second and third elements. - Sergey Kitaev, Dec 08 2020
a(n-1) is the number of permutations of [n] that can be obtained by placing n points on an X-shape (two crossing lines with slopes 1 and -1), labeling them 1,2,...,n by increasing y-coordinate, and then reading the labels by increasing x-coordinate. - Sergi Elizalde, Sep 27 2021
REFERENCES
D. H. Greene and D. E. Knuth, Mathematics for the Analysis of Algorithms. Birkhäuser, Boston, 3rd edition, 1990, p. 86.
D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 3, Sect 5.4.8 Answer to Exer. 8.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Andrei Asinowski and Cyril Banderier, From geometry to generating functions: rectangulations and permutations, arXiv:2401.05558 [cs.DM], 2024. See page 2.
Andrei Asinowski and Toufik Mansour, Separable d-Permutations and Guillotine Partitions, arXiv 0803.3414 [math.CO], 2008. Annals of Combinatorics 14 (1) pp.17-43 Springer, 2010; Abstract
George Balla, Ghislain Fourier, and Kunda Kambaso, PBW filtration and monomial bases for Demazure modules in types A and C, arXiv:2205.01747 [math.RT], 2022.
M. Barnabei, F. Bonetti, and M. Silimbani, Two permutation classes related to the Bubble Sort operator, Electronic Journal of Combinatorics 19(3) (2012), #P25. - From N. J. A. Sloane, Dec 25 2012
Yonah Biers-Ariel, A New Sequence Counted by OEIS Sequence a006012, arXiv:1706.07064 [math.CO], 2017.
Yonah Biers-Ariel, The Number of Permutations Avoiding a Set of Generalized Permutation Patterns, Journal of Integer Sequences, Vol. 20 (2017), Article 17.8.3.
Rocco Chirivì, Xin Fang, and Ghislain Fourier, Degenerate Schubert varieties in type A, Transformation Groups (2020).
CombOS - Combinatorial Object Server, Generate pattern-avoiding permutations
Sergi Elizalde, The X-class and almost-increasing permutations, arXiv:0710.5168 [math:CO], 2007. Ann. Comb. 15 (2011), 51-68.
S. Felsner and D. Heldt, Lattice Path Enumeration and Toeplitz Matrices, J. Int. Seq. 18 (2015) # 15.1.3.
Elizabeth Hartung, Hung Phuc Hoang, Torsten Mütze, and Aaron Williams, Combinatorial generation via permutation languages. I. Fundamentals, arXiv:1906.06069 [cs.DM], 2019.
Alice L. L. Gao and Sergey Kitaev, On partially ordered patterns of length 4 and 5 in permutations, arXiv:1903.08946 [math.CO], 2019.
Alice L. L. Gao and Sergey Kitaev, On partially ordered patterns of length 4 and 5 in permutations, The Electronic Journal of Combinatorics 26(3) (2019), P3.26.
Donghyun Kim and Lauren Williams, Schubert polynomials, the inhomogeneous TASEP, and evil-avoiding permutations, arXiv:2106.13378 [math.CO], 2021.
Sergey Kitaev and Artem Pyatkin, On permutations avoiding partially ordered patterns defined by bipartite graphs, arXiv:2204.08936 [math.CO], 2022.
Joshua Marsh and Nathan Williams, Nesting Nonpartitions, J. Int. Seq., Vol. 25 (2022), Article 22.8.8.
Arturo Merino and Torsten Mütze, Combinatorial generation via permutation languages. III. Rectangulations, arXiv:2103.09333 [math.CO], 2021.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
Markus Saers, Dekai Wu, and Chris Quirk, On the Expressivity of Linear Transductions.
Yi-dong Sun and Cang-zhi Jia, Counting Dyck paths with strictly increasing peak sequences, J. Math. Res. Expos. 27 (2) (2007) 253, Theorem 3.11.
FORMULA
G.f.: (1-2*x)/(1 - 4*x + 2*x^2).
a(n) = 2*A007052(n-1) = A056236(n)/2.
Binomial transform of A001333. E.g.f. exp(2x)cosh(x*sqrt(2)). - Paul Barry, May 08 2003
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2k)*2^(n-k) = Sum_{k=0..n} binomial(n, k)*2^(n-k/2)(1+(-1)^k)/2. - Paul Barry, Nov 22 2003 (typo corrected by Manfred Scheucher, Jan 17 2023)
a(n) = ((2+sqrt(2))^n + (2-sqrt(2))^n)/2.
a(n) = Sum_{k=0..n} 2^k*A098158(n,k). - Philippe Deléham, Dec 04 2006
a(n) = A007070(n) - 2*A007070(n-1). - R. J. Mathar, Nov 16 2007
a(n) = Sum_{k=0..n} A147703(n,k). - Philippe Deléham, Nov 29 2008
a(n) = Sum_{k=0..n} A201730(n,k). - Philippe Deléham, Dec 05 2011
G.f.: G(0) where G(k)= 1 + 2*x/((1-2*x) - 2*x*(1-2*x)/(2*x + (1-2*x)*2/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Dec 10 2012
G.f.: G(0)*(1-2*x)/2, where G(k) = 1 + 1/(1 - 2*x*(4*k+2-x)/( 2*x*(4*k+4-x) + 1/G(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Jan 27 2014
a(-n) = a(n) / 2^n for all n in Z. - Michael Somos, Aug 24 2014
a(n) = A265185(n) / 4, connecting this sequence to the simple Lie algebra B_4. - Tom Copeland, Dec 04 2015
E.g.f.: exp(2*x)*cosh(sqrt(2)*x). - Stefano Spezia, Nov 13 2019
MAPLE
A006012:=-(-1+2*z)/(1-4*z+2*z**2); # Simon Plouffe in his 1992 dissertation
with(GraphTheory): G:=PathGraph(7): A:= AdjacencyMatrix(G): nmax:=24; n2:=2*nmax: for n from 0 to n2 do B(n):=A^n; a(n):=add(B(n)[1, k], k=1..7); od: seq(a(2*n), n=0..nmax); # Johannes W. Meijer, May 29 2010
MATHEMATICA
LinearRecurrence[{4, -2}, {1, 2}, 50] (* or *) With[{c=Sqrt[2]}, Simplify[ Table[((2+c)^n+(3+2c)(2-c)^n)/(2(2+c)), {n, 50}]]] (* Harvey P. Dale, Aug 29 2011 *)
PROG
(PARI) {a(n) = real(((2 + quadgen(8))^n))}; /* Michael Somos, Feb 12 2004 */
(PARI) {a(n) = if( n<0, 2^n, 1) * polsym(x^2 - 4*x + 2, abs(n))[abs(n)+1] / 2}; /* Michael Somos, Feb 12 2004 */
(PARI) Vec((1-2*x)/(1-4*x+2*x^2) + O(x^100)) \\ Altug Alkan, Dec 05 2015
(Magma) [n le 2 select n else 4*Self(n-1)- 2*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Apr 05 2011
(Haskell)
a006012 n = a006012_list !! n
a006012_list = 1 : 2 : zipWith (-) (tail $ map (* 4) a006012_list)
(map (* 2) a006012_list)
-- Reinhard Zumkeller, Oct 03 2011
(Python)
l = [1, 2]
for n in range(2, 101): l.append(4 * l[n - 1] - 2 * l[n - 2])
print(l) # Indranil Ghosh, Jul 02 2017
KEYWORD
nonn,easy
STATUS
approved
Number A(n,k) of tilings of a k X n rectangle using polyominoes of shape I; square array A(n,k), n>=0, k>=0, read by antidiagonals.
+10
10
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 4, 7, 4, 1, 1, 8, 29, 29, 8, 1, 1, 16, 124, 257, 124, 16, 1, 1, 32, 533, 2408, 2408, 533, 32, 1, 1, 64, 2293, 22873, 50128, 22873, 2293, 64, 1, 1, 128, 9866, 217969, 1064576, 1064576, 217969, 9866, 128, 1, 1, 256, 42451, 2078716, 22734496, 50796983, 22734496, 2078716, 42451, 256, 1
OFFSET
0,8
COMMENTS
A polyomino of shape I is a rectangle of width 1.
All columns (or rows) are linear recurrences with constant coefficients. An upper bound on the order of the recurrence is A005683(k+2). This upper bound is exact for at least 1 <= k <= 10. - Andrew Howroyd, Dec 23 2019
LINKS
Wikipedia, Polyomino
EXAMPLE
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 2, 4, 8, 16, 32, ...
1, 2, 7, 29, 124, 533, 2293, ...
1, 4, 29, 257, 2408, 22873, 217969, ...
1, 8, 124, 2408, 50128, 1064576, 22734496, ...
1, 16, 533, 22873, 1064576, 50796983, 2441987149, ...
1, 32, 2293, 217969, 22734496, 2441987149, 264719566561, ...
PROG
(PARI)
step(v, S)={vector(#v, i, sum(j=1, #v, v[j]*2^hammingweight(bitand(S[i], S[j]))))}
mkS(k)={apply(b->bitand(b, 2*b+1), [2^(k-1)..2^k-1])}
T(n, k)={if(k<2, if(k==0||n==0, 1, 2^(n-1)), my(S=mkS(k), v=vector(#S, i, i==1)); for(n=1, n, v=step(v, S)); vecsum(v))} \\ Andrew Howroyd, Dec 23 2019
CROSSREFS
Columns (or rows) k=0-7 give: A000012, A011782, A052961, A254124, A254125, A254126, A254458, A254607.
Main diagonal gives: A254127.
Cf. A005683.
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Jan 30 2015
STATUS
approved
The number of tilings of a 3 X n rectangle using integer length rectangles with at least one side of length 1, i.e., tiles are 1 X 1, 1 X 2, ..., 1 X n, 2 X 1, 3 X 1.
+10
8
1, 4, 29, 257, 2408, 22873, 217969, 2078716, 19827701, 189133073, 1804125632, 17209452337, 164160078241, 1565914710964, 14937181915469, 142485030313697, 1359157571347928, 12964936038223753, 123671875897903249, 1179699833714208556, 11253097663211943461
OFFSET
0,2
COMMENTS
Let G_n be the graph with vertices {(a,b) : 1<=a<=5, 1<=b<=2n-1, a+b odd} and edges between (a,b) and (c,d) if and only if |a-b|=|c-d|=1. Then a(n) is the number of independent sets in G_n.
FORMULA
G.f.: (1 - 8*x + 5*x^2)/(1 - 12*x + 24*x^2 - 5*x^3).
a(n) = 12*a(n-1) - 24*a(n-2) + 5*a(n-3) for n > 2. - Colin Barker, Jun 07 2020
PROG
(PARI) Vec((1-8*x+5*x^2)/(1-12*x+24*x^2-5*x^3) + O(x^30)) \\ Michel Marcus, Jan 26 2015
CROSSREFS
Column k=3 of A254414.
KEYWORD
nonn,easy
AUTHOR
Steve Butler, Jan 25 2015
STATUS
approved
The number of tilings of a 4 X n rectangle using integer length rectangles with at least one side of length 1, i.e., tiles are 1 X 1, 1 X 2, ..., 1 X n, 2 X 1, 3 X 1, 4 X 1.
+10
8
1, 8, 124, 2408, 50128, 1064576, 22734496, 486248000, 10404289216, 222647030144, 4764694602112, 101966374503680, 2182126445631232, 46698521255409152, 999370260391863808, 21386993399983588352, 457691719382960757760, 9794818132582234683392
OFFSET
0,2
COMMENTS
Let G_n be the graph with vertices {(a,b) : 1<=a<=7, 1<=b<=2n-1, a+b odd} and edges between (a,b) and (c,d) if and only if |a-b|=|c-d|=1. Then a(n) is the number of independent sets in G_n.
LINKS
Z. Zhang, Merrifield-Simmons index of generalized Aztec diamond and related graphs, MATCH Commun. Math. Comput. Chem. 56 (2006) 625-636.
FORMULA
G.f.: (1 - 22x + 86x^2 - 92x^3 + 16x^4)/(1 - 30x + 202x^2 - 396x^3 + 248x^4 - 32x^5).
a(n) = 30*a(n-1) - 202*a(n-2) + 396*a(n-3) - 248*a(n-4) + 32*a(n-5) for n>4. - Colin Barker, Jun 07 2020
PROG
(PARI) Vec((1-22*x+86*x^2-92*x^3+16*x^4)/(1-30*x+202*x^2-396*x^3 +248*x^4-32*x^5) + O(x^30)) \\ Michel Marcus, Jan 26 2015
CROSSREFS
Column k=4 of A254414.
KEYWORD
nonn,easy
AUTHOR
Steve Butler, Jan 25 2015
STATUS
approved
The number of tilings of a 5 X n rectangle using integer length rectangles with at least one length of size 1, i.e., tiles are 1 X 1, 1 X 2, ..., 1 X n, 2 X 1, 3 X 1, 4 X 1, 5 X 1.
+10
7
1, 16, 533, 22873, 1064576, 50796983, 2441987149, 117656540512, 5672528575545, 273541357254277, 13191518965300160, 636171495829068099, 30680036092304563369, 1479579136691648516016, 71354395560692698401005, 3441147782121276015384833, 165953315828852845775456128
OFFSET
0,2
COMMENTS
Let G_n be the graph with vertices {(a,b) : 1<=a<=9, 1<=b<=2n-1, a+b odd} and edges between (a,b) and (c,d) if and only if |a-b|=|c-d|=1. Then a(n) is the number of independent sets in G_n.
LINKS
FORMULA
G.f: (1 - 58*x + 799*x^2 - 4041*x^3 + 8286*x^4 - 7357*x^5 + 2660*x^6 - 312*x^7)/(1 - 74*x + 1450*x^2 - 10672*x^3 + 34214*x^4 - 50814*x^5 + 34671*x^6 - 9772*x^7 + 936*x^8).
CROSSREFS
Column k=5 of A254414.
KEYWORD
nonn,easy
AUTHOR
Steve Butler, Jan 25 2015
STATUS
approved
a(n) = 3*a(n-1) + a(n-2) with a(0)=2 and a(1)=5.
+10
5
2, 5, 17, 56, 185, 611, 2018, 6665, 22013, 72704, 240125, 793079, 2619362, 8651165, 28572857, 94369736, 311682065, 1029415931, 3399929858, 11229205505, 37087546373, 122491844624, 404563080245, 1336181085359, 4413106336322, 14575500094325, 48139606619297
OFFSET
0,1
COMMENTS
Inverse binomial transform of A052961 (without the leading 1).
For n >= 1, also the number of matchings in the n-alkane graph. - Eric W. Weisstein, Jul 14 2021
LINKS
Eric Weisstein's World of Mathematics, Alkane Graph
Eric Weisstein's World of Mathematics, Matching
Eric Weisstein's World of Mathematics, Maximum Independent Edge Set
FORMULA
G.f.: (2-x)/(1-3*x-x^2).
a(n) = 3*a(n-1) + a(n-2) with a(0)=2 and a(1)=5.
a(n) = ((4+7*A)*A^(-n-1) + (4+7*B)*B^(-n-1))/13 with A = (-3+sqrt(13))/2 and B = (-3-sqrt(13))/2.
Lim_{k->infinity} a(n+k)/a(k) = (-1)^n*2/(A006497(n) - A006190(n)*sqrt(13)).
a(n) = 2 * Sum_{k=0..n-2} A168561(n-2,k)*3^k + 5 * Sum_{k=0..n-1} A168561(n-1,k)*3^k, n>0. - R. J. Mathar, Feb 14 2024
a(n) = 2*A006190(n+1) - A006190(n). - R. J. Mathar, Feb 14 2024
MAPLE
a:= n-> (<<0|1>, <1|3>>^n. <<2, 5>>)[1, 1]:
seq(a(n), n=0..27); # Alois P. Heinz, Jul 14 2021
MATHEMATICA
LinearRecurrence[{3, 1}, {5, 7}, 20] (* Eric W. Weisstein, Jul 14 2021 *)
CoefficientList[Series[(2 - x)/(1 - 3 x - x^2), {x, 0, 20}], x] (* Eric W. Weisstein, Jul 14 2021 *)
PROG
(PARI) a(n)=([0, 1; 1, 3]^n*[2; 5])[1, 1] \\ Charles R Greathouse IV, Oct 13 2016
CROSSREFS
Appears in A180142.
Cf. A000602 (more information on n-alkanes).
KEYWORD
easy,nonn
AUTHOR
Johannes W. Meijer, Aug 13 2010
STATUS
approved
Triangle of coefficients of polynomials v(n,x) jointly generated with A208342; see the Formula section.
+10
5
1, 0, 2, 0, 1, 3, 0, 1, 2, 5, 0, 1, 2, 5, 8, 0, 1, 2, 6, 10, 13, 0, 1, 2, 7, 13, 20, 21, 0, 1, 2, 8, 16, 29, 38, 34, 0, 1, 2, 9, 19, 39, 60, 71, 55, 0, 1, 2, 10, 22, 50, 86, 122, 130, 89, 0, 1, 2, 11, 25, 62, 116, 187, 241, 235, 144, 0, 1, 2, 12, 28, 75, 150, 267, 392, 468
OFFSET
1,3
COMMENTS
u(n,n) = A000045(n+1) (Fibonacci numbers).
n-th row sum: 2^(n-1)
As triangle T(n,k) with 0 <= k <= n, it is (0, 1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (2, -1/2, -1/2, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Feb 26 2012
FORMULA
u(n,x) = u(n-1,x) + x*v(n-1,x),
v(n,x) = x*u(n-1,x) + x*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
From Philippe Deléham, Feb 26 2012: (Start)
As triangle T(n,k) with 0 <= k <= n:
T(n,k) = T(n-1,k) + T(n-1,k-1) + T(n-2,k-2) - T(n-2,k-1), T(0,0) = 1, T(1,0) = 0, T(1,1) = 2, T(n,k) = 0 if k > n or if k < 0.
G.f.: (1-(1-y)*x)/(1-(1+y)*x+y*(1-y)*x^2).
Sum_{k=0..n} T(n,k)*x^k = (-1)*A091003(n+1), A152166(n), A000007(n), A000079(n), A055099(n), A152224(n) for x = -2, -1, 0, 1, 2, 3 respectively.
Sum_{k=0..n} T(n,k)*x^(n-k) = A087205(n), A140165(n+1), A016116(n+1), A000045(n+2), A000079(n), A122367(n), A006012(n), A052961(n), A154626(n) for x = -3, -2, -1, 0, 1, 2, 3, 4 respectively. (End)
T(n,k) = A208748(n,k)/2^k. - Philippe Deléham, Mar 05 2012
EXAMPLE
First five rows:
1;
0, 2;
0, 1, 3;
0, 1, 2, 5;
0, 1, 2, 5, 8;
First five polynomials v(n,x):
1
2x
x + 3x^2
x + 2x^2 + 5x^3
x + 2x^2 + 5x^3 + 8x^4.
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 13;
u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];
v[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x];
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A208342 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A208343 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Feb 25 2012
STATUS
approved
The number of tilings of an n X n rectangle using integer length rectangles with at least one side of length 1, i.e., tiles are of size (1 X i) or (i X 1) with 1<=i<=n.
+10
5
1, 1, 7, 257, 50128, 50796983, 264719566561, 7063448084710944, 963204439792722969647, 670733745303300958404439297, 2384351527902618144856749327661056, 43263422878945294225852497665519673400479, 4006622856873663241294794301627790673728956619649
OFFSET
0,3
COMMENTS
Let R(n) be the set of squares that have vertices at integer coordinates and lie in the region of the plane |x|+|y|<=n+1, and let two squares be independent if they do not share a common edge. Then a(n) is the number of ways to pick a set of independent cell(s) in R(n). (Note R(n) is also known as the Aztec diamond.)
LINKS
Z. Zhang, Merrifield-Simmons index of generalized Aztec diamond and related graphs, MATCH Commun. Math. Comput. Chem. 56 (2006) 625-636.
EXAMPLE
a(2)=7 for the following 7 tilings:
_ _ _ _ _ _ _ _ _ _ _ _ _ _
|_|_| |_ _| |_|_| | |_| |_| | |_ _| | | |
|_|_| |_|_| |_ _| |_|_| |_|_| |_ _| |_|_|
PROG
(SageMath)
def matrix_entry(L1, L2, n):
tally=0
for i in range(n-1):
if (not i in L1) and (not i in L2) and (not i+1 in L1) and (not i+1 in L2):
tally+=1
return 2^tally
def a(n):
index_set={}
counter=0
for C in Combinations(n):
index_set[counter]=C
counter+=1
current_v=[0]*counter
current_v[0]=1
for t in range(n):
new_v=[0]*counter
for i in range(counter):
for j in range(counter):
new_v[i]+=current_v[j]*matrix_entry(index_set[I], index_set[j], n)
current_v=new_v
return current_v[0]
for n in range(0, 10):
print(a(n), end=', ')
CROSSREFS
Main diagonal of A254414.
KEYWORD
nonn
AUTHOR
Steve Butler, Jan 25 2015
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, Jan 30 2015
STATUS
approved
a(n+2) = 5a(n+1) - 3a(n) (n >= 1); a(0) = 1, a(1) = 2, a(2) = 9.
+10
4
1, 2, 9, 39, 168, 723, 3111, 13386, 57597, 247827, 1066344, 4588239, 19742163, 84946098, 365504001, 1572681711, 6766896552, 29116437627, 125281498479, 539058179514, 2319446402133, 9980057472123, 42941948154216
OFFSET
0,2
MATHEMATICA
Join[{1}, LinearRecurrence[{5, -3}, {2, 9}, 30]] (* Harvey P. Dale, Sep 04 2013 *)
CROSSREFS
Equals A095934 - A095940. Cf. A052961.
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jul 13 2004
EXTENSIONS
Extended by Ray Chandler, Jul 16 2004
STATUS
approved
a(n) = 10*a(n-1) - 12*a(n-2) for n > 1; a(0) = 1, a(1) = 4 .
+10
2
1, 4, 28, 232, 1984, 17056, 146752, 1262848, 10867456, 93520384, 804794368, 6925699072, 59599458304, 512886194176, 4413668442112, 37982050091008, 326856479604736, 2812780194955264, 24205524194295808, 208301879603494912, 1792552505703399424, 15425902501792055296
OFFSET
0,2
FORMULA
G.f.: (1-6*x)/(1-10*x+12*x^2).
a(n) = Sum_{k=0..n} A147703(n,k)*3^(n-k).
a(n) = 2^n*A052961(n). - R. J. Mathar, Jun 14 2016
MATHEMATICA
LinearRecurrence[{10, -12}, {1, 4}, 25] (* Paolo Xausa, Jan 19 2024 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Philippe Deléham, Dec 09 2008
STATUS
approved

Search completed in 0.015 seconds