Displaying 1-3 of 3 results found.
page
1
Squares whose decimal expansion digits occur with an exact frequency of 4.
+10
4
1001481404808481, 1104154545050041, 1111089088998009, 1188048401014084, 1192212961662969, 1196996001616900, 1241122461466624, 1363116969931396, 1414171674764676, 1575561716675716, 1722919127979721, 1855588212218521
COMMENTS
Last term is 9999888877774166231060453541302412563025. - Giovanni Resta, Mar 21 2013
a(n)^2 is a square whose decimal expansion digits occur with an exact frequency of 3.
+10
3
10011, 10110, 10401, 11001, 11010, 14499, 20022, 20220, 22002, 22020, 28998, 31086, 333303, 344514, 354318, 354996, 360096, 367854, 379665, 414189, 442263, 458499, 458610, 460719, 462765, 467997, 470682, 484173, 492489, 518484, 528297
COMMENTS
For case frequency 2 the first terms correspond to those of sequence A052049.
MATHEMATICA
Select[Range[53*10^4], Union[Tally[IntegerDigits[#^2]][[All, 2]]]=={3}&] (* Harvey P. Dale, May 05 2018 *)
a(n)^2 is a square whose decimal expansion digits occur with an exact frequency of 4.
+10
3
31646191, 33228821, 33333003, 34468078, 34528437, 34597630, 35229568, 36920414, 37605474, 39693346, 41508061, 43076539, 43109691, 43485609, 43529521, 44147309, 44294056, 45455649, 45460011, 45460110, 45961010
EXAMPLE
33228821 is in the sequence because 33228821^2 = 1104154545050041, in which each digit is repeated 4 times.
Search completed in 0.004 seconds
|