[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a050323 -id:a050323
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of factorizations of n into distinct factors greater than 1.
+10
278
1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 3, 2, 2, 1, 5, 1, 2, 2, 3, 1, 5, 1, 3, 2, 2, 2, 5, 1, 2, 2, 5, 1, 5, 1, 3, 3, 2, 1, 7, 1, 3, 2, 3, 1, 5, 2, 5, 2, 2, 1, 9, 1, 2, 3, 4, 2, 5, 1, 3, 2, 5, 1, 9, 1, 2, 3, 3, 2, 5, 1, 7, 2, 2, 1, 9, 2, 2, 2, 5, 1, 9, 2, 3, 2, 2, 2, 10, 1, 3, 3, 5, 1, 5, 1, 5
OFFSET
1,6
COMMENTS
This sequence depends only on the prime signature of n and not on the actual value of n.
Also the number of strict multiset partitions (sets of multisets) of the prime factors of n. - Gus Wiseman, Dec 03 2016
Number of sets of integers greater than 1 whose product is n. - Antti Karttunen, Feb 20 2024
LINKS
Philippe A. J. G. Chevalier, On the discrete geometry of physical quantities, Preprint, 2012.
P. A. J. G. Chevalier, A "table of Mendeleev" for physical quantities?, Slides from a talk, May 14 2014, Leuven, Belgium.
A. Knopfmacher, M. Mays, Ordered and Unordered Factorizations of Integers: Unordered Factorizations with Distinct Parts, The Mathematica Journal 10(1), 2006.
Eric Weisstein's World of Mathematics, Unordered Factorization
FORMULA
Dirichlet g.f.: Product_{n>=2}(1 + 1/n^s).
Let p and q be two distinct prime numbers and k a natural number. Then a(p^k) = A000009(k) and a(p^k*q) = A036469(k). - Alexander Adam, Dec 28 2012
Let p_i with 1<=i<=k k distinct prime numbers. Then a(Product_{i=1..k} p_i) = A000110(k). - Alexander Adam, Dec 28 2012
EXAMPLE
24 can be factored as 24, 2*12, 3*8, 4*6, or 2*3*4, so a(24) = 5. The factorization 2*2*6 is not permitted because the factor 2 is present twice. a(1) = 1 represents the empty factorization.
MAPLE
with(numtheory):
b:= proc(n, k) option remember;
`if`(n>k, 0, 1) +`if`(isprime(n), 0,
add(`if`(d>k, 0, b(n/d, d-1)), d=divisors(n) minus {1, n}))
end:
a:= n-> b(n$2):
seq(a(n), n=1..120); # Alois P. Heinz, May 26 2013
MATHEMATICA
gd[m_, 1] := 1; gd[1, n_] := 0; gd[1, 1] := 1; gd[0, n_] := 0; gd[m_, n_] := gd[m, n] = Total[gd[# - 1, n/#] & /@ Select[Divisors[n], # <= m &]]; Array[ gd[#, #] &, 100] (* Alexander Adam, Dec 28 2012 *)
PROG
(PARI) v=vector(100, k, k==1); for(n=2, #v, v+=dirmul(v, vector(#v, k, k==n)) ); v /* Max Alekseyev, Jul 16 2014 */
(PARI) A045778(n, k=n) = ((n<=k) + sumdiv(n, d, if(d > 1 && d <= k && d < n, A045778(n/d, d-1)))); \\ After Alois P. Heinz's Maple-code by Antti Karttunen, Jul 23 2017, edited Feb 20 2024
(PARI) A045778(n, m=n) = if(1==n, 1, sumdiv(n, d, if((d>1)&&(d<=m), A045778(n/d, d-1)))); \\ Antti Karttunen, Feb 20 2024
(PARI)
(Python)
from sympy.core.cache import cacheit
from sympy import divisors, isprime
@cacheit
def b(n, k): return (0 if n>k else 1) + (0 if isprime(n) else sum(0 if d>k else b(n//d, d - 1) for d in divisors(n)[1:-1]))
def a(n): return b(n, n)
print([a(n) for n in range(1, 121)]) # Indranil Ghosh, Aug 19 2017, after Maple code
(APL, Dyalog dialect)
divisors ← {ð←⍵{(0=⍵|⍺)/⍵}⍳⌊⍵*÷2 ⋄ 1=⍵:ð ⋄ ð, (⍵∘÷)¨(⍵=(⌊⍵*÷2)*2)↓⌽ð}
A045778 ← { D←1↓divisors(⍵) ⋄ T←(⍴D)⍴2 ⋄ +/⍵⍷{×/D/⍨T⊤⍵}¨(-∘1)⍳2*⍴D } ⍝ (simple, but a memory hog)
A045778 ← { ⍺←⌽divisors(⍵) ⋄ 1=⍵:1 ⋄ 0=≢⍺:0 ⋄ R←⍺↓⍨⍺⍳⍵∘÷ ⋄ Ð←{⍺/⍨0=⍺|⍵} ⋄ +/(((R)Ð⊢)∇⊢)¨(⍵∘÷)¨⍺ } ⍝ (more efficient) - Antti Karttunen, Feb 20 2024
CROSSREFS
Cf. A036469, A114591, A114592, A316441 (Dirichlet inverse).
Cf. A156648 (2*Dgf at s=2), A073017 (2*Dgf at s=3), A258870 (2*Dgf at s=4).
Cf. also A069626 (Number of sets of integers > 1 whose least common multiple is n).
KEYWORD
nonn,easy,nice
EXTENSIONS
Edited by Franklin T. Adams-Watters, Jun 04 2009
STATUS
approved
2-adic valuation of A025487: largest k such that 2^k divides A025487(n), where A025487 gives products of primorials.
+10
10
0, 1, 2, 1, 3, 2, 4, 3, 1, 5, 2, 4, 2, 6, 3, 5, 3, 7, 4, 2, 6, 1, 3, 4, 8, 5, 3, 7, 2, 4, 5, 9, 6, 4, 8, 3, 5, 2, 6, 10, 3, 7, 2, 4, 5, 9, 4, 6, 3, 7, 11, 4, 8, 1, 3, 5, 6, 10, 5, 7, 4, 8, 12, 5, 9, 2, 4, 6, 3, 7, 11, 2, 4, 6, 8, 5, 3, 9, 5, 13, 6, 10, 3, 5, 7, 4, 8, 12, 3, 5, 7, 9, 2, 6, 4, 10, 6, 14, 7, 11, 4, 6, 8, 5, 9, 13, 4, 6, 8, 3, 10, 3, 7, 1, 5, 11, 7, 4
OFFSET
1,3
COMMENTS
a(n) can be used for resorting A025487 and sequences indexed by A025487, e.g., A050322, A050323, A050324 and A050325.
a(n) is the number of primorial numbers (A002110) larger than 1 in the representation of A025487(n) as a product of primorial numbers. - Amiram Eldar, Jun 03 2023
LINKS
FORMULA
a(n) = A007814(A025487(n)) = A051903(A025487(n)). - Matthew Vandermast, Jul 03 2012
EXAMPLE
a(8) = 3 because A025487(8) = 24 and 2^3 divides 24.
MATHEMATICA
max = 40000; A025487 = {1}; lpe = {}; Do[ pe = Sort[ FactorInteger[n][[All, 2]]]; If[FreeQ[lpe, pe], AppendTo[lpe, pe]; AppendTo[A025487, n]], {n, 2, max}]; a[n_] := FactorInteger[ A025487[[n]] ][[1, 2]]; a[1] = 0; Table[a[n], {n, 1, Length[A025487]}] (* Jean-François Alcover, Jun 14 2012, after Robert G. Wilson v *)
PROG
(Haskell)
a051282 = a007814 . a025487 -- Reinhard Zumkeller, Apr 06 2013
(PARI) isA025487(n)=my(k=valuation(n, 2), t); n>>=k; forprime(p=3, default(primelimit), t=valuation(n, p); if(t>k, return(0), k=t); if(k, n/=p^k, return(n==1)))
[valuation(n, 2) | n <- [1..1000], isA025487(n)]
\\ Or, for older versions:
apply(n->valuation(n, 2), select(isA025487, [1..1000])) \\ Charles R Greathouse IV, Nov 07 2014
KEYWORD
nice,nonn
AUTHOR
EXTENSIONS
More terms from Naohiro Nomoto, Mar 11 2001
STATUS
approved

Search completed in 0.009 seconds