[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a050329 -id:a050329
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of ordered factorizations of n into squarefree numbers > 1.
+10
6
1, 1, 1, 1, 1, 3, 1, 1, 1, 3, 1, 5, 1, 3, 3, 1, 1, 5, 1, 5, 3, 3, 1, 7, 1, 3, 1, 5, 1, 13, 1, 1, 3, 3, 3, 13, 1, 3, 3, 7, 1, 13, 1, 5, 5, 3, 1, 9, 1, 5, 3, 5, 1, 7, 3, 7, 3, 3, 1, 31, 1, 3, 5, 1, 3, 13, 1, 5, 3, 13, 1, 25, 1, 3, 5, 5, 3, 13, 1, 9, 1, 3, 1, 31, 3, 3, 3, 7, 1, 31, 3, 5, 3, 3, 3, 11, 1, 5
OFFSET
1,6
COMMENTS
a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24 = 2^3*3 and 375 = 3*5^3 both have prime signature (3,1).
LINKS
FORMULA
Dirichlet g.f.: 1/(1-B(s)) where B(s) is D.g.f. of characteristic function of squarefree numbers > 1.
a(A000961(n)) = 1.
a(A002110(n)) = A000670(n).
a(n) = Sum_{d divides n, d<n} A008966(n/d)*a(d). - Vladeta Jovovic, Sep 25 2002, corrected by Antti Karttunen, May 27 2017
G.f. A(x) satisfies: A(x) = x + Sum_{k>=2} mu(k)^2*A(x^k). - Ilya Gutkovskiy, May 10 2019
MATHEMATICA
a[n_]:=If[n==1, n, Sum[If[(d<n && SquareFreeQ[n/d]), a[d], 0], {d, Divisors[n]}]]; Table[a[n], {n, 100}] (* Indranil Ghosh, May 27 2017 *)
PROG
(Haskell)
import Data.List (genericIndex)
a050328 n = genericIndex a050328_list (n-1)
a050328_list = f 1 where
f x = (if x == 1 then 1 else
sum $ map (a050328 . (div x)) $ tail $ a206778_row x) : f (x + 1)
-- Reinhard Zumkeller, May 03 2013
(PARI) A050328(n) = if(1==n, n, sumdiv(n, d, if((d<n && issquarefree(n/d)), A050328(d), 0))); \\ Antti Karttunen, May 27 2017
KEYWORD
nonn
AUTHOR
Christian G. Bower, Oct 15 1999
STATUS
approved

Search completed in 0.009 seconds