OFFSET
1,6
COMMENTS
a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24 = 2^3*3 and 375 = 3*5^3 both have prime signature (3,1).
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
FORMULA
Dirichlet g.f.: 1/(1-B(s)) where B(s) is D.g.f. of characteristic function of squarefree numbers > 1.
a(A000961(n)) = 1.
a(n) = Sum_{d divides n, d<n} A008966(n/d)*a(d). - Vladeta Jovovic, Sep 25 2002, corrected by Antti Karttunen, May 27 2017
G.f. A(x) satisfies: A(x) = x + Sum_{k>=2} mu(k)^2*A(x^k). - Ilya Gutkovskiy, May 10 2019
MATHEMATICA
a[n_]:=If[n==1, n, Sum[If[(d<n && SquareFreeQ[n/d]), a[d], 0], {d, Divisors[n]}]]; Table[a[n], {n, 100}] (* Indranil Ghosh, May 27 2017 *)
PROG
(Haskell)
import Data.List (genericIndex)
a050328 n = genericIndex a050328_list (n-1)
a050328_list = f 1 where
f x = (if x == 1 then 1 else
sum $ map (a050328 . (div x)) $ tail $ a206778_row x) : f (x + 1)
-- Reinhard Zumkeller, May 03 2013
(PARI) A050328(n) = if(1==n, n, sumdiv(n, d, if((d<n && issquarefree(n/d)), A050328(d), 0))); \\ Antti Karttunen, May 27 2017
KEYWORD
nonn
AUTHOR
Christian G. Bower, Oct 15 1999
STATUS
approved