Displaying 1-5 of 5 results found.
page
1
Let s_n be the simplex packing n-width for the manifold torus X square; sequence gives denominator of s_n/Pi.
+10
7
1, 1, 3, 7, 2, 2, 2, 2, 7, 37, 5
REFERENCES
F. Miller Maley et al., Symplectic packings in cotangent bundles of tori, Experimental Mathematics, 9 (No. 3, 2000), 435-455.
EXAMPLE
1, 1, 2/3, 4/7, 1/2, 1/2, 1/2, 1/2, 3/7, 15/37, 2/5, ...
EXTENSIONS
It is conjectured that the sequence continues 3/8, 4/11, 7/20, 15/44, 46/137, 1/3, 1/3, ...
Let g_n be the ball packing n-width for the manifold torus X interval; sequence gives denominator of (g_n/Pi)^2.
+10
5
1, 4, 4, 4, 25, 25, 64, 289, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64
FORMULA
G.f.: x*(1 + 2*x - 3*x^2 + 21*x^4 - 21*x^5 + 39*x^6 + 186*x^7 - 505*x^8 + 281*x^9) / (1 - x)^2.
a(n) = 2*a(n-1) - a(n-2) for n>10.
a(n) = n for n>8.
(End)
EXAMPLE
1, 1/4, 1/4, 1/4, 4/25, 4/25, 9/64, 36/289, 1/9, 1/10, ...
Let g_n be the ball packing n-width for the manifold torus X interval; sequence gives numerator of (g_n/Pi)^2.
+10
3
1, 1, 1, 1, 4, 4, 9, 36, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
FORMULA
G.f.: x*(1 + 3*x^4 + 5*x^6 + 27*x^7 - 35*x^8) / (1 - x).
a(n) = a(n-1) for n>9.
a(n) = 1 for n>8.
(End)
EXAMPLE
1, 1/4, 1/4, 1/4, 4/25, 4/25, 9/64, 36/289, 1/9, 1/10, ...
Let g_n be the ball packing n-width for the manifold torus X square; sequence gives numerator of (g_n/Pi)^2.
+10
3
1, 1, 4, 4, 9, 16, 64, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1
FORMULA
G.f.: x*(1 + x + 3*x^2 + 3*x^3 + 5*x^4 + 12*x^5 + 55*x^6 - 15*x^7 - 62*x^8) / ((1 - x^2)).
a(n) = a(n-2) for n>=10.
a(n) = (3 - (-1)^n) / 2 for n>=8.
(End)
EXAMPLE
1, 1, 4/9, 4/9, 9/25, 16/49, 64/225, 1/4, ...
EXTENSIONS
Duplicated a(8) removed and entry revised by Sean A. Irvine, Oct 11 2022
Let g_n be the ball packing n-width for the manifold torus X square; sequence gives denominator of (g_n/Pi)^2.
+10
3
1, 1, 9, 9, 25, 49, 225, 4, 9, 5, 11, 6, 13, 7, 15, 8, 17, 9, 19, 10, 21, 11, 23, 12, 25, 13, 27, 14, 29, 15, 31, 16, 33, 17, 35, 18, 37, 19, 39, 20, 41, 21, 43, 22, 45, 23, 47, 24, 49, 25, 51, 26, 53, 27, 55, 28, 57, 29, 59, 30, 61, 31, 63, 32, 65, 33, 67, 34
FORMULA
For n>=8, a(2n+1) = 2n+1, a(2n) = n. - Ralf Stephan, May 29 2004
G.f.: x*(1 + x + 7*x^2 + 7*x^3 + 8*x^4 + 32*x^5 + 184*x^6 - 85*x^7 - 416*x^8 + 46*x^9 + 218*x^10) / ((1 - x)^2*(1+x)^2).
a(n) = 2*a(n-2) - a(n-4) for n>=11.
a(n) = (1/4)*(3 - (-1)^n)*(n-1) for n>=8.
(End)
EXAMPLE
1, 1, 4/9, 4/9, 9/25, 16/49, 64/225, 1/4, ...
EXTENSIONS
Duplicated a(8) removed and entry revised by Sean A. Irvine, Oct 11 2022
Search completed in 0.006 seconds
|