[go: up one dir, main page]

login
Search: a059817 -id:a059817
     Sort: relevance | references | number | modified | created      Format: long | short | data
Let s_n be the simplex packing n-width for the manifold torus X square; sequence gives denominator of s_n/Pi.
+10
7
1, 1, 3, 7, 2, 2, 2, 2, 7, 37, 5
OFFSET
1,3
REFERENCES
F. Miller Maley et al., Symplectic packings in cotangent bundles of tori, Experimental Mathematics, 9 (No. 3, 2000), 435-455.
EXAMPLE
1, 1, 2/3, 4/7, 1/2, 1/2, 1/2, 1/2, 3/7, 15/37, 2/5, ...
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
N. J. A. Sloane, Feb 24 2001
EXTENSIONS
It is conjectured that the sequence continues 3/8, 4/11, 7/20, 15/44, 46/137, 1/3, 1/3, ...
Edited by N. J. A. Sloane, May 23 2014
STATUS
approved
Let g_n be the ball packing n-width for the manifold torus X interval; sequence gives denominator of (g_n/Pi)^2.
+10
5
1, 4, 4, 4, 25, 25, 64, 289, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64
OFFSET
1,2
LINKS
F. Miller Maley et al., Symplectic packings in cotangent bundles of tori, Experimental Mathematics, 9 (No. 3, 2000), 435-455.
FORMULA
From Colin Barker, Nov 06 2019: (Start)
G.f.: x*(1 + 2*x - 3*x^2 + 21*x^4 - 21*x^5 + 39*x^6 + 186*x^7 - 505*x^8 + 281*x^9) / (1 - x)^2.
a(n) = 2*a(n-1) - a(n-2) for n>10.
a(n) = n for n>8.
(End)
EXAMPLE
1, 1/4, 1/4, 1/4, 4/25, 4/25, 9/64, 36/289, 1/9, 1/10, ...
KEYWORD
nonn,frac,easy
AUTHOR
N. J. A. Sloane, Feb 24 2001
EXTENSIONS
Edited by N. J. A. Sloane, May 23 2014
STATUS
approved
Let g_n be the ball packing n-width for the manifold torus X interval; sequence gives numerator of (g_n/Pi)^2.
+10
3
1, 1, 1, 1, 4, 4, 9, 36, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
OFFSET
1,5
LINKS
F. Miller Maley et al., Symplectic packings in cotangent bundles of tori, Experimental Mathematics, 9 (No. 3, 2000), 435-455.
FORMULA
From Colin Barker, Nov 06 2019: (Start)
G.f.: x*(1 + 3*x^4 + 5*x^6 + 27*x^7 - 35*x^8) / (1 - x).
a(n) = a(n-1) for n>9.
a(n) = 1 for n>8.
(End)
EXAMPLE
1, 1/4, 1/4, 1/4, 4/25, 4/25, 9/64, 36/289, 1/9, 1/10, ...
KEYWORD
nonn,frac,easy
AUTHOR
N. J. A. Sloane, Feb 24 2001
EXTENSIONS
Edited by N. J. A. Sloane, May 23 2014
STATUS
approved
Let g_n be the ball packing n-width for the manifold torus X square; sequence gives numerator of (g_n/Pi)^2.
+10
3
1, 1, 4, 4, 9, 16, 64, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1
OFFSET
1,3
LINKS
F. Miller Maley et al., Symplectic packings in cotangent bundles of tori, Experimental Mathematics, 9 (No. 3, 2000), 435-455.
FORMULA
From Colin Barker, Nov 06 2019: (Start)
G.f.: x*(1 + x + 3*x^2 + 3*x^3 + 5*x^4 + 12*x^5 + 55*x^6 - 15*x^7 - 62*x^8) / ((1 - x^2)).
a(n) = a(n-2) for n>=10.
a(n) = (3 - (-1)^n) / 2 for n>=8.
(End)
a(n) / A059816(n) = 2 / n, for n >= 8 [from Maley et al.]. - Sean A. Irvine, Oct 11 2022
EXAMPLE
1, 1, 4/9, 4/9, 9/25, 16/49, 64/225, 1/4, ...
KEYWORD
nonn,frac
AUTHOR
N. J. A. Sloane, Feb 24 2001
EXTENSIONS
Edited by N. J. A. Sloane, May 23 2014
Duplicated a(8) removed and entry revised by Sean A. Irvine, Oct 11 2022
STATUS
approved
Let g_n be the ball packing n-width for the manifold torus X square; sequence gives denominator of (g_n/Pi)^2.
+10
3
1, 1, 9, 9, 25, 49, 225, 4, 9, 5, 11, 6, 13, 7, 15, 8, 17, 9, 19, 10, 21, 11, 23, 12, 25, 13, 27, 14, 29, 15, 31, 16, 33, 17, 35, 18, 37, 19, 39, 20, 41, 21, 43, 22, 45, 23, 47, 24, 49, 25, 51, 26, 53, 27, 55, 28, 57, 29, 59, 30, 61, 31, 63, 32, 65, 33, 67, 34
OFFSET
1,3
LINKS
F. Miller Maley et al., Symplectic packings in cotangent bundles of tori, Experimental Mathematics, 9 (No. 3, 2000), 435-455.
FORMULA
For n>=8, a(2n+1) = 2n+1, a(2n) = n. - Ralf Stephan, May 29 2004
From Colin Barker, Nov 06 2019: (Start)
G.f.: x*(1 + x + 7*x^2 + 7*x^3 + 8*x^4 + 32*x^5 + 184*x^6 - 85*x^7 - 416*x^8 + 46*x^9 + 218*x^10) / ((1 - x)^2*(1+x)^2).
a(n) = 2*a(n-2) - a(n-4) for n>=11.
a(n) = (1/4)*(3 - (-1)^n)*(n-1) for n>=8.
(End)
A059815(n) / a(n) = 2 / n, for n >= 8 [from Maley et al.]. - Sean A. Irvine, Oct 11 2022
EXAMPLE
1, 1, 4/9, 4/9, 9/25, 16/49, 64/225, 1/4, ...
KEYWORD
nonn,frac
AUTHOR
N. J. A. Sloane, Feb 24 2001
EXTENSIONS
Edited by N. J. A. Sloane, May 23 2014
Duplicated a(8) removed and entry revised by Sean A. Irvine, Oct 11 2022
STATUS
approved

Search completed in 0.006 seconds