[go: up one dir, main page]

login
Search: a059817 -id:a059817
     Sort: relevance | references | number | modified | created      Format: long | short | data
Let s_n be the simplex packing n-width for the manifold torus X square; sequence gives denominator of s_n/Pi.
+10
7
1, 1, 3, 7, 2, 2, 2, 2, 7, 37, 5
Let g_n be the ball packing n-width for the manifold torus X interval; sequence gives denominator of (g_n/Pi)^2.
+10
5
1, 4, 4, 4, 25, 25, 64, 289, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64
Let g_n be the ball packing n-width for the manifold torus X interval; sequence gives numerator of (g_n/Pi)^2.
+10
3
1, 1, 1, 1, 4, 4, 9, 36, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Let g_n be the ball packing n-width for the manifold torus X square; sequence gives numerator of (g_n/Pi)^2.
+10
3
1, 1, 4, 4, 9, 16, 64, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1
Let g_n be the ball packing n-width for the manifold torus X square; sequence gives denominator of (g_n/Pi)^2.
+10
3
1, 1, 9, 9, 25, 49, 225, 4, 9, 5, 11, 6, 13, 7, 15, 8, 17, 9, 19, 10, 21, 11, 23, 12, 25, 13, 27, 14, 29, 15, 31, 16, 33, 17, 35, 18, 37, 19, 39, 20, 41, 21, 43, 22, 45, 23, 47, 24, 49, 25, 51, 26, 53, 27, 55, 28, 57, 29, 59, 30, 61, 31, 63, 32, 65, 33, 67, 34

Search completed in 0.006 seconds