[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a059431 -id:a059431
     Sort: relevance | references | number | modified | created      Format: long | short | data
Cumulative boustrophedon transform of 1, 0, 0, 0, ...
+10
3
1, 1, 2, 8, 51, 478, 6178, 105330, 2290069, 61839897, 2030449500, 79661186168, 3680458880352, 197781841355220, 12231649482909444, 862560715175755168, 68799732139319891208, 6162698115430291654438, 615995773861169229993018
OFFSET
0,3
COMMENTS
For n>0, a(n) equals the element in the upper left corner of the matrix equal to the product of n X n matrices given by: Product_{k=1..n} M_k where M_k(r,c)=k+2-r-c when r+c<=k+1 and zeros elsewhere (see example). - Paul D. Hanna, Feb 08 2007
FORMULA
See Maple code for precise description.
EXAMPLE
For n=5, the matrix product:
[1 0 0 0 0] [2 1 0 0 0] [3 2 1 0 0] [4 3 2 1 0] [5 4 3 2 1]
[0 0 0 0 0] [1 0 0 0 0] [2 1 0 0 0] [3 2 1 0 0] [4 3 2 1 0]
[0 0 0 0 0] [0 0 0 0 0] [1 0 0 0 0] [2 1 0 0 0] [3 2 1 0 0]
[0 0 0 0 0] [0 0 0 0 0] [0 0 0 0 0] [1 0 0 0 0] [2 1 0 0 0]
[0 0 0 0 0] [0 0 0 0 0] [0 0 0 0 0] [0 0 0 0 0] [1 0 0 0 0]
equals the matrix below with a(5)=478 in the upper left corner:
[478 362 246 138 51]
[__0 __0 __0 __0 _0]
[__0 __0 __0 __0 _0]
[__0 __0 __0 __0 _0]
[__0 __0 __0 __0 _0]
also a(4)=51 will be in the upper right corner.
MAPLE
CBOUS2 := proc(a) option remember; local c, i, j, n, r: if whattype(a) <> list then RETURN([]); fi: n := min( nops(a), 60); for i from 0 to n-1 do c[i, 0] := a[i+1]; od; for i to n-1 do for j to i do c[i, j] := c[i, j-1] + add(c[i-1, i-r], r=1..j); od; od; RETURN([seq(c[i, i], i=0..n-1)]); end:
MATHEMATICA
m[n_, k_] := Table[If[r+c <= k+1, k+2-r-c, 0], {r, 1, n}, {c, 1, n}]; a[0] = 1; a[n_] := (Dot @@ Table[m[n, k], {k, 1, n}])[[1, 1]]; Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Jul 18 2012, after Paul D. Hanna *)
PROG
(PARI) {a(n)=if(n==0, 1, prod(k=1, n, matrix(n, n, r, c, if(r+c<=k+1, k+2-r-c)))[1, 1])} \\ Paul D. Hanna, Feb 08 2007
CROSSREFS
See the triangles in A059431 and A059432.
KEYWORD
nonn,easy,nice
AUTHOR
N. J. A. Sloane, Jan 31 2001
STATUS
approved
Triangle formed when cumulative boustrophedon transform is applied to 1, 0, 0, 0, ..., read by rows in natural order.
+10
3
1, 0, 1, 0, 1, 2, 0, 2, 5, 8, 0, 8, 21, 36, 51, 0, 51, 138, 246, 362, 478, 0, 478, 1318, 2404, 3628, 4903, 6178, 0, 6178, 17259, 31968, 49081, 67512, 86421, 105330, 0, 105330, 297081, 556344, 864688, 1205000, 1562571, 1926320, 2290069
OFFSET
0,6
FORMULA
From Petros Hadjicostas, Feb 16 2021: (Start)
T(i,j) = T(i,j-1) + Sum_{r=1..j} T(i-1,i-r) for i >= 1 and 1 <= j <= i with T(i,0) = b(i+1) for i >= 0, where b(1) = 1 and b(i) = 0 for i >= 2. (The sequence b = (b(i): i >= 1) is the input sequence.)
T(i,j) = 2*T(i,j-1) - T(i,j-2) + T(i-1,i-j) for i >= 2 and 2 <= j <= i.
T(i,i) = A059429(i) = T(i+1,1) for i >= 0. (End)
EXAMPLE
Triangle T(i,j) (with rows i >= 0 and columns j = 0..i) begins:
1;
0, 1;
0, 1, 2;
0, 2, 5, 8;
0, 8, 21, 36, 51;
0, 51, 138, 246, 362, 478;
0, 478, 1318, 2404, 3628, 4903, 6178;
0, 6178, 17259, 31968, 49081, 67512, 86421, 105330;
... - Petros Hadjicostas, Feb 16 2021
MAPLE
# This is a modification of N. J. A. Sloane's program from A059429:
CBOUS2 := proc(a) local c, i, j, n, r: option remember: if whattype(a) <> list then RETURN([]): end if: n := min(nops(a), 60): for i from 0 to n - 1 do c[i, 0] := a[i + 1]: end do: for i to n - 1 do for j to i do c[i, j] := c[i, j - 1] + add(c[i - 1, i - r], r = 1 .. j): end do: end do: RETURN([seq(seq(c[i, j], j = 0 .. i), i = 0 .. n - 1)]): end proc:
# To get the flattened triangle up to the 9th row, we type
CBOUS2([1, 0, 0, 0, 0, 0, 0, 0, 0, 0]); # Petros Hadjicostas, Feb 16 2021
CROSSREFS
KEYWORD
nonn,tabl,easy
AUTHOR
N. J. A. Sloane, Jan 31 2001
STATUS
approved
a(n) = Sum_{k=0..n} A059432(n,k).
+10
0
1, 1, 3, 15, 116, 1275, 18909, 363749, 8807403, 262089849, 9401686696, 400089347172, 19927273211442, 1148368173455106, 75812694541312803, 5684165502304973376, 480334585284310506044, 45439833370389830274384, 4783252893141511378449783
OFFSET
0,3
COMMENTS
Row sums of both triangular arrays A059431 and A059432.
FORMULA
a(n) = Sum_{k=0..n} A059431(n,k).
EXAMPLE
a(6) = 0 + 478 + 1318 + 2404 + 3628 + 4903 + 6178 = 18909.
CROSSREFS
KEYWORD
nonn
AUTHOR
Petros Hadjicostas, Feb 16 2021
STATUS
approved

Search completed in 0.006 seconds